# Publications

This page contains all my publications; for more details, see my Google Scholar profile. For a non-technical overview of some of my work, see the webpage for the Fundamentals of Statistical Machine Learning project at the Turing Institute. Alternatively, if you would like a brief introduction to some of the fields I work in and have contributed to, you may prefer to have a look at the following project pages:

## Preprints

Anastasiou, A., Barp, A.,

, Ebner, B., Gaunt, R. E., Ghaderinezhad, F., Gorham, J., Gretton, A., Ley, C., Liu, Q., Mackey, L., Oates, C. J., Reinert, G. & Swan, Y. (2021).*Briol, F-X.**Stein’s method meets statistics: A review of some recent developments*. arXiv:2105.03481. ()*Preprint*Mastubara, T., Knoblauch, J.,

, Oates, C. J. (2021).*Briol, F-X.**Robust generalised Bayesian inference for intractable likelihoods*. arXiv:2104.07359. () (*Preprint*)*Code*Si, S., Oates, C. J., Duncan, A. B., Carin, L.,

(2020).*Briol. F-X.**Scalable control variates for Monte Carlo methods via stochastic optimization*. arXiv:2006.07487. () (*Preprint*)*Video*, Barp, A., Duncan, A. B., Girolami, M. (2019).*Briol, F-X.**Statistical inference for generative models with maximum mean discrepancy*. arXiv:1906.05944. () (*Preprint*)*Talk/Video*

## Published Papers

Mastubara, T., Oates, C. J.,

(2021).*Briol, F-X.**The ridgelet prior: A covariance function approach to prior specification for Bayesian neural networks*. arXiv:2010.08488. Accepted for publication in the Journal of Machine Learning Research. () (*Preprint*) (*Video*)*Code*Bharti, A.,

, Pedersen, T. (2021).*Briol, F-X.**A general method for calibrating stochastic radio channel models with kernels*. IEEE Transactions on Antennas and Propagation. () (*Journal*) (*Preprint*)*Code*Wynne, G.,

, Girolami, M. (2021).*Briol, F-X.**Convergence guarantees for Gaussian process means with misspecified likelihoods and smoothness*. Journal of Machine Learning Research, 22 (123), 1-40. () (*Journal*)*Preprint*Bharti, A., Adeogun, R., Cai, X., Fan, W.,

, Clavier, L., Pedersen, T. (2020).*Briol, F-X.**Joint modeling of received power, mean delay and delay spread for wideband radio channels*. IEEE Transactions on Antennas and Propagation. () (*Journal*)*Preprint*Zhu, H., Liu, X., Kang, R., Shen, Z., Flaxman, S.,

(2020).*Briol, F-X.**Bayesian probabilistic numerical integration with tree-based models*. Neural Information Processing Systems, 5837-5849. () (*Conference*) (*Preprint*)*Code*Barp, A.,

, Duncan, A. B., Girolami, M., Mackey, L. (2019).*Briol, F-X.**Minimum Stein discrepancy estimators*. Neural Information Processing Systems, 12964-12976. () (*Conference*) (*Preprint*)*Talk/Video*Chen, W. Y., Barp, A.,

, Gorham, J., Girolami, M., Mackey, L., Oates, C. J. (2019).*Briol, F-X.**Stein point Markov chain Monte Carlo*. International Conference on Machine Learning, PMLR 97:1011-1021. () (*Conference*) (*Preprint*)*Code*, Oates, C. J., Girolami, M., Osborne, M. A. & Sejdinovic, D. (2019).*Briol, F-X.**Probabilistic integration: a role in statistical computation?*Statistical Science, Vol 34, Number 1, 1-22. () (*Journal*) (*Preprint*)*Supplement*- This paper accepted with discussion and rejoinder. There are three discussion pieces by (i) Fred Hickernel and R. Jagadeeswaran (Journal) (Preprint), (ii) Art Owen (Journal) (Preprint), and (iii) Michael Stein and Ying Hung (Journal).
- This paper was awarded a Student Paper Award from the section on Bayesian Statistical Science of the American Statistical Association in 2016.
- This paper was discussed on several blogs, including by Prof. Andrew Gelman and Prof. Christian Robert.

Oates, C. J., Cockayne, J.,

& Girolami, M. (2019).*Briol, F-X.**Convergence rates for a class of estimators based on Stein’s identity*. Bernoulli, Vol. 25, No. 2, 1141-1159. () (*Journal*)*Preprint*- Xi, X.,
& Girolami, M. (2018).*Briol, F-X.**Bayesian quadrature for multiple related integrals*. International Conference on Machine Learning, PMLR 80:5369-5378. () (*Conference*)*Preprint*- This paper was accepted for a long talk (top 8% of submitted papers).

Chen, W. Y., Mackey, L., Gorham, J.

& Oates, C. J. (2018).*Briol, F-X.**Stein points*. International Conference on Machine Learning, PMLR 80:843-852. () (*Conference*) (*Preprint*)*Code*Barp, A.,

, Kennedy, A. D. & Girolami, M. (2018).*Briol, F-X.**Geometry and dynamics for Markov chain Monte Carlo*. Annual Review of Statistics and Its Applications, Vol. 5:451-471. () (*Journal*)*Preprint*Oates, C. J., Niederer, S., Lee, A.,

& Girolami, M. (2017).*Briol, F-X.**Probabilistic models for integration error in the assessment of functional cardiac models*. Advances in Neural Information Processing Systems (NeurIPS), 109-117. () (*Conference*)*Preprint*, Oates, C. J., Cockayne, J., Chen, W. Y. & Girolami, M. (2017).*Briol, F-X.**On the sampling problem for kernel quadrature*. Proceedings of the 34th International Conference on Machine Learning, PMLR 70:586-595. () (*Conference*)*Preprint*, Oates, C. J., Girolami, M. & Osborne, M. A. (2015).*Briol, F-X.**Frank-Wolfe Bayesian Quadrature: probabilistic integration with theoretical guarantees*. Advances In Neural Information Processing Systems (NIPS), 1162-1170. () (*Preprint*)*Conference*- This paper was accepted with a spotlight presentation (top 4.5% of submitted papers).
- This paper was discussed in the blog of Ingmar Schuster.

- Barp, A., Barp, E. G.,
& Ueltschi, D. (2015).*Briol, F-X.**A numerical study of the 3D random interchange and random loop models*. Journal of Physics A: Mathematical and Theoretical, 48(34). () (*Journal*)*Preprint*

## Discussions and Opinion Pieces

Zhu, H., Liu, X., Caron, A., Manolopoulou, I. Flaxman, S.,

(2020).*Briol, F-X.**Contributed Discussion of “Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects”*. Bayesian Analysis, 15(3), 965-1056. () (*Journal (pp55-58)*)*Preprint*, Diaz De la O, F. A., Hristov, P. O. (2019).*Briol, F-X.**Contributed Discussion of “A Bayesian Conjugate Gradient Method”*. Bayesian Analysis, 14(3), 980-984. () (*Journal*)*Preprint*, Oates, C. J., Girolami, M., Osborne, M. A. & Sejdinovic, D. (2019).*Briol, F-X.**Rejoinder for “Probabilistic integration: a role in statistical computation?”*Statistical Science, Vol 34, Number 1, 38-42. () (*Journal*)*Preprint*& Girolami, M. (2018)*Briol, F-X.**Bayesian numerical methods as a case study for statistical data science*, Statistical Data Science (Chapter 6): 99-110. ()*Book*, Cockayne, J. & Teymur, O. (2016).*Briol, F-X.**Contributed discussion on article by Chkrebtii, Campbell, Calderhead, and Girolami*. Bayesian Analysis, 11(4), 1285-1293. () (*Journal*)*Preprint*

## Dissertations

(2019).*Briol, F-X.**Statistical computation with kernels*. PhD thesis, Department of Statistics, University of Warwick. ()*PDF*(2014).*Briol, F-X.**Inference for Hawkes Processes*. Masters thesis, Department of Statistics, University of Warwick.