

Cost-aware simulation-based inference

Dr François-Xavier Briol Department of Statistical Science University College London <u>https://fxbriol.github.io/</u> <u>https://fsml-ucl.github.io/</u>

Ayush Bharti

Daolang Huang

Sami Kaski

Bayesian inference:

 $p(\theta | y_1, ..., y_n) \propto \prod_{i=1}^{n} p(y_i | \theta) p(\theta)$ i=1

Bayesian inference:

 $p(\theta | y_1, ..., y_n) \propto \prod_{i=1}^{n} p(y_i | \theta) p(\theta)$ i=1

Bayesian inference:

$$p(\theta | y_1, ..., y_n) \propto \prod_{i=1}^n p(y_i | \theta) p(\theta)$$

Two main approaches:

• Approximate Bayesian computation (ABC).

Beaumont, M. A. (2019). Approximate Bayesian computation. *Annual Review of Statistics and Its Application*, *6*, 379–403.

Bayesian inference:

$$p(\theta | y_1, ..., y_n) \propto \prod_{i=1}^n p(y_i | \theta) p(\theta)$$

11

Two main approaches:

- Approximate Bayesian computation (ABC).
- Neural-based simulation-based inference.

Beaumont, M. A. (2019). Approximate Bayesian computation. *Annual Review of Statistics and Its Application*, 6, 379–403.

Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based inference. *Proceedings of the National Academy of Sciences of the United States of America*, 117(48).

Simulators can be really computationally expensive!

Simulators can be really computationally expensive!

• Most simulators used in SBI papers take only a few seconds (or less) to run.

Simulators can be really computationally expensive!

- Most simulators used in SBI papers take only a few seconds (or less) to run.
- Even if a simulator takes only a few minutes, we typically need thousands of simulations!

Simulators can be really computationally expensive!

- Most simulators used in SBI papers take only a few seconds (or less) to run.
- Even if a simulator takes only a few minutes, we typically need thousands of simulations!
- Simulators that take more time are currently out of reach of existing methods.

Simulators can be really computationally expensive!

- Most simulators used in SBI papers take only a few seconds (or less) to run.
- Even if a simulator takes only a few minutes, we typically need thousands of simulations!
- Simulators that take more time are currently out of reach of existing methods.

A great playground for computational statisticians!

SBI for radio-propagation

Bharti, A., **Briol, F-X.**, Pedersen, T. (2022). A general method for calibrating stochastic radio channel models with kernels. IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 3986-4001, June 2022.

SBI for radio-propagation

Bharti, A., **Briol, F-X.**, Pedersen, T. (2022). A general method for calibrating stochastic radio channel models with kernels. IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 3986-4001, June 2022.

The cost of simulations is not constant...

The cost of simulations is not constant...

• Step 1: train a conditional density model $q_{\phi}(\cdot | \theta)$ to approximate the likelihood using samples from the prior $(\theta_1, \dots, \theta_n \sim \pi)$ and simulator $(\mathbf{x}_i \sim p(\cdot | \theta_i))$:

$$\arg\min_{\phi} \mathscr{E}_{\text{NLE}}(\phi) = -\frac{1}{n} \sum_{i=1}^{n} \log q_{\phi}(\mathbf{x}_i | \theta_i) \approx -\mathbb{E}_{\theta \sim p(\theta)}[\mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\theta}}[\log q_{\phi}(\mathbf{x} | \theta)]]$$

• Step 1: train a conditional density model $q_{\phi}(\cdot | \theta)$ to approximate the likelihood using samples from the prior $(\theta_1, \ldots, \theta_n \sim \pi)$ and simulator $(\mathbf{x}_i \sim p(\cdot | \theta_i))$:

$$\arg\min_{\phi} \mathscr{E}_{\text{NLE}}(\phi) = -\frac{1}{n} \sum_{i=1}^{n} \log q_{\phi}(\mathbf{x}_i | \theta_i) \approx -\mathbb{E}_{\theta \sim p(\theta)}[\mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\theta}}[\log q_{\phi}(\mathbf{x} | \theta)]]$$

• **Step 2:** Do Bayes with approximate likelihood!

$$p(\theta | y_1, \dots, y_n) \propto \prod_{i=1}^n q_{\phi^*}(y_i | \theta) p(\theta)$$

• Step 1: train a conditional density model $q_{\phi}(\cdot | \theta)$ to approximate the likelihood using samples from the prior $(\theta_1, \ldots, \theta_n \sim \pi)$ and simulator $(\mathbf{x}_i \sim p(\cdot | \theta_i))$:

$$\arg\min_{\phi} \mathscr{E}_{\text{NLE}}(\phi) = -\frac{1}{n} \sum_{i=1}^{n} \log q_{\phi}(\mathbf{x}_i | \theta_i) \approx -\mathbb{E}_{\theta \sim p(\theta)}[\mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\theta}}[\log q_{\phi}(\mathbf{x} | \theta)]]$$

• **Step 2:** Do Bayes with approximate likelihood!

Typically the most computationally expensive step!!

$$p(\theta | y_1, ..., y_n) \propto \prod_{i=1}^n q_{\phi^*}(y_i | \theta) p(\theta)$$

• Step 1: train a conditional density model $q_{\phi}(\cdot | \theta)$ to approximate the likelihood using samples from the prior $(\theta_1, \ldots, \theta_n \sim \pi)$ and simulator $(\mathbf{x}_i \sim p(\cdot | \theta_i))$:

$$\arg\min_{\phi} \mathscr{E}_{\text{NLE}}(\phi) = -\frac{1}{n} \sum_{i=1}^{n} \log q_{\phi}(\mathbf{x}_i | \theta_i) \approx -\mathbb{E}_{\theta \sim p(\theta)}[\mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\theta}}[\log q_{\phi}(\mathbf{x} | \theta)]]$$

• **Step 2:** Do Bayes with approximate likelihood!

Typically the most computationally expensive step!!

$$p(\theta | y_1, ..., y_n) \propto \prod_{i=1}^n q_{\phi^*}(y_i | \theta) p(\theta)$$

• Can do similarly and approximate a posterior..... Neural posterior estimation (NPE).

A cheaper step 1?

$$\mathscr{E}_{\text{NLE}}(\phi) = -\frac{1}{n} \sum_{i=1}^{n} \log q_{\phi}(\mathbf{x}_{i} | \theta_{i}) \approx -\mathbb{E}_{\theta \sim p(\theta)}[\mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\theta}}[\log q_{\phi}(\mathbf{x} | \theta)]]$$

Can we do this better/cheaper?!

A cheaper step 1?

$$\mathscr{\ell}_{\text{NLE}}(\phi) = -\frac{1}{n} \sum_{i=1}^{n} \log q_{\phi}(\mathbf{x}_{i} | \theta_{i}) \approx -\mathbb{E}_{\theta \sim p(\theta)}[\mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\theta}}[\log q_{\phi}(\mathbf{x} | \theta)]]$$

Can we do this better/cheaper?!

Idea: • Let's make use of the cost function $c: \Theta \to \mathbb{R}$.

A cheaper step 1?

$$\mathscr{\ell}_{\text{NLE}}(\phi) = -\frac{1}{n} \sum_{i=1}^{n} \log q_{\phi}(\mathbf{x}_{i} | \theta_{i}) \approx -\mathbb{E}_{\theta \sim p(\theta)}[\mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\theta}}[\log q_{\phi}(\mathbf{x} | \theta)]]$$

Can we do this better/cheaper?!

- **Idea:** Let's make use of the cost function $c: \Theta \to \mathbb{R}$.
 - We can try to sample less often in expensive regions but we still want to target the right objective.

$$\mu = \int_{\Theta} f(\theta) \pi(\theta) d\theta$$

$$\mu = \int_{\Theta} f(\theta) \pi(\theta) d\theta = \int_{\Theta} f(\theta) \frac{\pi(\theta)}{\tilde{\pi}(\theta)} \tilde{\pi}(\theta) d\theta$$

$$\mu = \int_{\Theta} f(\theta) \pi(\theta) d\theta = \int_{\Theta} f(\theta) \frac{\pi(\theta)}{\tilde{\pi}(\theta)} \tilde{\pi}(\theta) d\theta$$
$$\approx \sum_{i=1}^{N} w(\theta_i) f(\theta_i) \qquad \theta_1, \dots, \theta_N \sim \tilde{\pi}$$

$$\mu = \int_{\Theta} f(\theta) \pi(\theta) d\theta = \int_{\Theta} f(\theta) \frac{\pi(\theta)}{\tilde{\pi}(\theta)} \tilde{\pi}(\theta) d\theta$$
$$\approx \sum_{i=1}^{N} w(\theta_i) f(\theta_i) \qquad \theta_1, \dots, \theta_N \sim \tilde{\pi}$$
$$w_{\mathsf{IS}}(\theta_i) = \frac{1}{N} \frac{\pi(\theta_i)}{\tilde{\pi}(\theta_i)}$$

$$\mu = \int_{\Theta} f(\theta) \pi(\theta) d\theta = \int_{\Theta} f(\theta) \frac{\pi(\theta)}{\tilde{\pi}(\theta)} \tilde{\pi}(\theta) d\theta$$
$$\approx \sum_{i=1}^{N} w(\theta_i) f(\theta_i) \qquad \theta_1, \dots, \theta_N \sim \tilde{\pi}$$
$$w_{\mathsf{IS}}(\theta_i) = \frac{1}{N} \frac{\pi(\theta_i)}{\tilde{\pi}(\theta_i)} \qquad w_{\mathsf{SNIS}}(\theta_i) = \frac{w_{\mathsf{IS}}(\theta_i)}{\sum_{j=1}^{N} w_{\mathsf{IS}}(\theta_j)}$$

Question: How do you pick the importance distribution?

 $\tilde{\pi}_{g}(\theta) \propto \frac{\pi(\theta)}{g(c(\theta))},$

We want a distribution similar to our target $\boldsymbol{\pi}$

We do not want to sample often where the cost is large!

$$\begin{split} \tilde{\pi}_g(\theta) \propto \frac{\pi(\theta)}{g(c(\theta))}, \\ g: (0,\infty) \to (0,\infty) \text{ taken to} \\ \text{be non-decreasing.} \end{split}$$

Represents how much we dislike 'expensive' parameters!

g:

≜ UC L

Cost-aware importance sampling

 $\tilde{\pi}_g(\theta) \propto \frac{\pi(\theta)}{g(c(\theta))},$

 $\tilde{\pi}_g(\theta) \propto \frac{\pi(\theta)}{g(c(\theta))},$

$$w(\theta) = \frac{1}{N} \frac{\pi(\theta)}{\tilde{\pi}_g(\theta)} = \frac{B\pi(\theta)g(c(\theta))}{N\pi(\theta)} \propto g(c(\theta))$$

Through $\tilde{\pi}_{g}$, we sample less often from expensive regions, so we need to up-weight expensive samples.

$$w(\theta) = \frac{1}{N} \frac{\pi(\theta)}{\tilde{\pi}_{g}(\theta)} = \frac{B\pi(\theta)g(c(\theta))}{N\pi(\theta)} \propto g(c(\theta))$$
$$w_{\text{Ca}}(\theta_{i}) = \frac{w(\theta_{i})}{\sum_{j=1}^{n} w(\theta_{j})} = \frac{g(c(\theta_{i}))}{\sum_{j=1}^{n} g(c(\theta_{j}))} \qquad \text{We use SNIS weights}$$
$$\mu = \int_{\Theta} f(\theta)\pi(\theta)d\theta \approx \sum_{i=1}^{n} w_{\text{Ca}}(\theta_{i})f(\theta_{i}) = \hat{\mu}_{n}^{\text{Ca}}$$

• We can use rejection sampling!

• We can use rejection sampling!

Repeat until *n* samples are accepted:

- 1. Sample $\theta^{\star} \sim \pi(\theta)$.
- 2. Accept θ^{\star} as a sample from $\tilde{\pi}_{g}$ with probability $A(\theta)$.

• We can use rejection sampling!

Repeat until *n* samples are accepted:

- 1. Sample $\theta^{\star} \sim \pi(\theta)$.
- 2. Accept θ^{\star} as a sample from $\tilde{\pi}_{g}$ with probability $A(\theta)$.

Proposition: Assume $g_{\min} := \inf_{\theta \in \Theta} g(c(\theta)) > 0$. Then

• $\tilde{\pi}_g$ is a density.

• The correct acceptance probability is $A(\theta) = \frac{g_{\min}}{g(c(\theta))}$

• We can use rejection sampling!

Repeat until *n* samples are accepted:

1. Sample $\theta^{\star} \sim \pi(\theta)$.

2. Accept θ^{\star} as a sample from $\tilde{\pi}_g$ with probability $A(\theta)$.

Proposition: Assume $g_{\min} := \inf_{\theta \in \Theta} g(c(\theta)) > 0$. Then

• $\tilde{\pi}_g$ is a density.

• The correct acceptance probability is $A(\theta) = \frac{s_{\min}}{q(c(\theta))}$

• We can use rejection sampling!

Repeat until *n* samples are accepted:

1. Sample $\theta^{\star} \sim \pi(\theta)$.

2. Accept θ^{\star} as a sample from $\tilde{\pi}_g$ with probability $A(\theta)$.

Proposition: Assume $g_{\min} := \inf_{\theta \in \Theta} g(c(\theta)) > 0$. Then

• $ilde{\pi}_g$ is a density.

• The correct acceptance probability is $A(\theta) = \frac{8 \text{ min}}{\alpha (\alpha)}$

Being cost-averse decreases acceptance prob!

Putting it all together!

$$\ell_{\text{NLE}}(\phi) = -\frac{1}{n} \sum_{i=1}^{n} \log q_{\phi}(\mathbf{x}_i | \theta_i), \qquad \theta_i \sim p(\theta), \mathbf{x}_i \sim p(\cdot | \theta)$$

Putting it all together!

$$\mathscr{C}_{\text{Ca-NLE}}(\phi) = -\frac{1}{n} \sum_{i=1}^{n} w_{\text{Ca}}(\theta_i) \log q_{\phi}(\mathbf{x}_i \mid \theta_i), \qquad \theta_i \sim \tilde{p}_g(\theta), \mathbf{x}_i \sim p(\cdot \mid \theta)$$

Importance sampling can have infinite variance!!!

. Suppose that $g_{\max} = \sup_{\theta \in \Theta} g(c(\theta)) < \infty.$ Then:

• Suppose that $g_{\max} = \sup_{\theta \in \Theta} g(c(\theta)) < \infty$. Then: 1. The weights are bounded: $\frac{g_{\min}}{ng_{\max}} \le w_{Ca}(\theta_i) \le \frac{g_{\max}}{ng_{\min}} \quad \forall i \in \{1, ..., n\},$

. Suppose that $g_{\max} = \sup_{\theta \in \Theta} g(c(\theta)) < \infty.$ Then:

2. If *f* is square-integrable; i.e. $\int_{\Theta} f(\theta)^2 \pi(\theta) d\theta < \infty$, then $Var(\hat{\mu}_{Ca}) = \sigma_{Ca}^2$ where:

$$\frac{g_{\min}}{g_{\max}}\left(\sigma_{\mathrm{MC}}^2 - \frac{\mu^2}{n}\right) \le \sigma_{\mathrm{Ca}}^2 \le \frac{g_{\max}}{g_{\min}}\left(\sigma_{\mathrm{MC}}^2 - \frac{\mu^2}{n}\right).$$

. Suppose that $g_{\max} = \sup_{\theta \in \Theta} g(c(\theta)) < \infty.$ Then:

3. The ESS is bounded:
$$\left(\frac{g_{\min}}{g_{\max}}\right)^2 \le \text{ESS} \le \left(\frac{g_{\max}}{g_{\min}}\right)^2$$
.

• We consider three different models with 1,2 and 3 parameters respectively, and use NPE.

• We consider three different models with 1,2 and 3 parameters respectively, and use NPE.

	$\overline{\text{MMD}}^2(\downarrow)$					Time saved (\uparrow)			
	NDE	Ca-NPE	Ca-NPE	Ca-NPE	Ca-NPE	Ca-NPE	Ca-NPE	Ca-NPE	Ca-NPE
	NFE	$g(z) = z^{0.5}$	g(z) = z	$g(z)=z^2$	$\operatorname{multiple}$	$g(z) = z^{0.5}$	g(z) = z	$g(z)=z^2$	multiple
Homogen.	0.02(0.02)	0.02(0.01)	0.02(0.02)	0.23(0.08)	0.05(0.04)	16%(2)	38%(2)	70%(2)	30%(5)
Temporal	0.03(0.03)	0.06(0.03)	0.07(0.03)	0.07(0.03)	0.05(0.04)	36%(4)	65%(2)	85%(1)	24%(5)
Bernoulli	0.02(0.00)	0.02(0.00)	0.02(0.01)	0.04(0.01)	0.02(0.00)	23%(4)	37%(4)	47%(3)	25%(6)

- 0.10

Some epidemiological models

Back to radio-propagation

Bharti, A., **Briol, F-X.**, Pedersen, T. (2022). A general method for calibrating stochastic radio channel models with kernels. IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 3986-4001, June 2022.

• We proposed a novel importance sampling algorithm which focuses on **down weighting sampling** in regions with a **large downstream cost**.

- We proposed a novel importance sampling algorithm which focuses on down weighting sampling in regions with a large downstream cost.
- Although I presented this for NLE/NPE, we also have experiments for ABC and it could be applied to any other sampling-based SBI method.

- We proposed a novel importance sampling algorithm which focuses on down weighting sampling in regions with a large downstream cost.
- Although I presented this for NLE/NPE, we also have experiments for ABC and it could be applied to any other sampling-based SBI method.
- Need more computational statisticians engaging with neural-based simulation inference!

From importance sampling to MLMC....

Low-fidelity

High-fidelity

Complement very few expensive but (physically) accurate simulations to combine cheap but inaccurate simulations (with missing physics).

Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X (2025). Multilevel neural simulation-based inference. Under review.

From importance sampling to MLMC....

Complement very few expensive but (physically) accurate simulations to combine cheap but inaccurate simulations (with missing physics).

Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X (2025). Multilevel neural simulation-based inference. Under review.

From importance sampling to MLMC....

Complement very few expensive but (physically) accurate simulations to combine cheap but inaccurate simulations (with missing physics).

Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X (2025). Multilevel neural simulation-based inference. Under review.

Any Questions?

Cost-aware simulation-based inference

Ayush Bharti, Daolang Huang, Samuel Kaski, Francois-Xavier Briol Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, PMLR 258:28-36, 2025.

Code: <u>https://github.com/huangdaolang/cost-aware-sbi</u>