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• Neural-based simulation-based inference.

• Approximate Bayesian computation (ABC).

Two main approaches:

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its 
Application, 6, 379–403.
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Simulators can be really computationally expensive!

A great playground for computational statisticians!

• Most simulators used in SBI papers take only a few seconds (or less) to run.

• Even if a simulator takes only a few minutes, we typically need thousands of simulations!

• Simulators that take more time are currently out of reach of existing methods.
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• Can do similarly and approximate a posterior….. Neural posterior estimation (NPE).
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∑
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log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼ℙθ
[log qϕ(x |θ)]]

Can we do this better/cheaper?!

Idea: • Let’s make use of the cost function .c : Θ → ℝ
• We can try to sample less often in expensive regions …… 

but we still want to target the right objective.
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μ = ∫Θ
f(θ)π(θ)dθ = ∫Θ
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Question: How do you pick the importance distribution?
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w(θ) =
1
N

π(θ)
π̃g(θ)

=
Bπ(θ)g(c(θ))

Nπ(θ)
∝ g(c(θ))

Through , we sample less 
often from expensive regions, 
so we need to up-weight 
expensive samples.

π̃g

wCa(θi) =
w(θi)

∑n
j=1 w(θj)

=
g(c(θi))

∑n
j=1 g(c(θj))

μ = ∫Θ
f(θ)π(θ)dθ ≈

n

∑
i=1

wCa(θi)f(θi) = ̂μCa
n

We use SNIS weights
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Typically slight loss of accuracy but decent reduction in cost!
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Estimating the cost function
When the cost function is unknown, it can be estimated through simulations+regression. 
This is typically very cheap, and simulations can be re-used for inference!

Clearly not perfect, but still pretty good…Very accurate!



Computational Cost 
• Standard NLE: 15.6h,  
• Cost-aware NLE: 8.8h!!

Back to radio-propagation
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Conclusion

• We proposed a novel importance sampling algorithm which focuses on 
down weighting sampling in regions with a large downstream cost.

• Although I presented this for NLE/NPE, we also have experiments for ABC 
and it could be applied to any other sampling-based SBI method.

• Need more computational statisticians engaging with neural-based 
simulation inference!
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Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X (2025). Multilevel neural simulation-based inference. Under review.

Complement very few expensive but (physically) accurate simulations to 
combine cheap but inaccurate simulations (with missing physics). 



Any Questions?

Code: https://github.com/huangdaolang/cost-aware-sbi

https://github.com/huangdaolang/cost-aware-sbi

