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Two main approaches:
« Approximate Bayesian computation (ABC).

 Neural-based simulation-based inference.

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its
Application, 6,379—-403.

Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of
the National Academy of Sciences of the United States of America, 117(48).
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Challenge for SBI

Simulators can be really computationally expensive!

» Most simulators used in SBI papers take only a few seconds (or less) to run.
« Even if a simulator takes only a few minutes, we typically need thousands of simulations!

» Simulators that take more time are currently out of reach of existing methods.

A great playground for computational statisticians!



SBI for radio-propagation
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SBI for radio-propagation
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The cost of simulations is not constant...
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Neural likelihood estimation (NLE)
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. Step 1: train a conditional density model qd)( - | @) to approximate the likelihood

using samples from the prior (6, ..., 0, ~ ) and simulator (X; ~ p( - | 8,)):

. 1 <
arg m(;n ONLE(D) = — - Z log g,4(x;16) ~ — Eg_p)[Exp,llog q,(x|0)]]
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« Step 2: Do Bayes with approximate likelihood! Typically the most computationally
expensive step!!
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« Can do similarly and approximate a posterior..... Neural posterior estimation (NPE).
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A cheaper step 1?

1 n
CNLE(@P) = — s Z log qqs(xi 16) ~ — [EeNp(g)[[Epre[log q¢(X | )]]
i=1

Can we do this better/cheaper?!

Idea: « Let's make use of the cost functionc : ® — R.

* We can try to sample less often in expensive regions ......
but we still want to target the right objective.
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Question: How do you pick the importance distribution?
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Cost-aware importance sampling
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Cost-aware importance sampling

7(0)

’
g(C(Q)\ We do not want to sample often
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ﬁg(ﬁ) X



Cost-aware importance sampling

7(0)
g(c(0)

ﬁg(ﬁ) X

g2 :(0,00) = (0,00) taken to
be non-decreasing.

Represents how much we
dislike ‘expensive’ parameters!



Cost-aware importance sampling
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Cost-aware importance sampling

7(0)

O oy

«10-2Gamma(0, 1)

1.25
— ¢(0)
72!
3 1.00
=
S
g 075
8 0.50
O

0.25

J
o0 1000 500 1000
0 0

Upweight cheap region!



Cost-aware importance sampling
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Sampling from the cost-aware proposal

x10-2Gamma(6, 1) 15 x10~2

—
o
ot

1.00

* We can use rejection sampling!

.
-~ o
o

Ut
o ot

0.75

—

2 .50

Cost [seconds]

Repeat until n samples are accepted:

0.25
0.25

1. Sample 0* ~ 7(0). ’ ¥
2. Accept 0™ as a sample from 7, with probability A(6).
. . Being cost-averse
Proposition: Assume g_.. = eln(g 2(c(8)) > 0. Then decreases acceptance prob!
S

~

.« T, IS a density.

g .
- The correct acceptance probability is A(f) = ———

g(c(0))




Putting it all together!
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Some reassuring results
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When the cost function is unknown, it can be estimated through simulations+regression.
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When the cost function is unknown, it can be estimated through simulations+regression.
This is typically very cheap, and simulations can be re-used for inference!
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Estimating the cost function

When the cost function is unknown, it can be estimated through simulations+regression.
This is typically very cheap, and simulations can be re-used for inference!
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Estimating the cost function

When the cost function is unknown, it can be estimated through simulations+regression.
This is typically very cheap, and simulations can be re-used for inference!
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Back to radio-propagation
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Conclusion

« We proposed a novel importance sampling algorithm which focuses on
down weighting sampling in regions with a large downstream cost.

 Although | presented this for NLE/NPE, we also have experiments for ABC
and it could be applied to any other sampling-based SBI method.

 Need more computational statisticians engaging with neural-based
simulation inference!
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Any Questions?

Cost-aware simulation-based inference

Ayush Bharti, Daolang Huang, Samuel Kaski, Francois-Xavier Briol Proceedings of The 28th
International Conference on Artificial Intelligence and Statistics, PMLR 258:28-36, 2025.

Code: https://qithub.com/huangdaolang/cost-aware-sbi



https://github.com/huangdaolang/cost-aware-sbi

