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An interesting setting which requires more attention:

• Rather than brute-forcing each  with our favourite algorithm, we can share 
information across integration tasks!

It

• This can be particularly helpful if the tasks are “related”; i.e. we can converge faster! 

Key question: What does “related” mean, and how do 
we take advantage of it?
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An interesting setting which requires more attention:

Example 2: 
Related densities 
π1, …, πT
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Madras, N., & Piccioni, M. (1999). Importance sampling for families of distributions. The Annals of Applied Probability, 9(4), 
1202–1225.

Tang, X. (2013). Importance sampling for efficient parametric simulation. Boston University.

Demange-Chryst, J., Bachoc, F., & Morio, J. (2022). Efficient estimation of multiple expectations with the same sample by 
adaptive importance sampling and control variates. arXiv:2212.00568.
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• Closely related to multiple task setting if we fix some , in which case 
 and .

θ1, …, θT
ft(x) = f(x; θt) πt(x) = π(x; θt)

• We additionally will assume some smoothness in . That is, we know tasks 
given by  are going to be similar if .

θ
θt, θt′ θt ≈ θt′ 

We can take advantage of this assumption by encoding it 
in our algorithm/model!

[Several other talks at MCQMC, or papers from this community!]
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Goal: We want to approximate  over some region of the parameter space :I(θ) Θ

θ1:T := [θ1, ⋯, θT]⊤ ∈ ΘT

xt
1:N := [xt
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N]⊤ ∈ 𝒳N

f(xt
1:N, θt) := [ f(xt

1, θt), ⋯, f(xt
N, θt)]⊤ ∈ ℝN

Data: We have the following “data” available:

 tasksT

 samples per taskN

Function values at each 
sample for each task
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Hyperparameters in 
the prior or likelihood

Bayesian posterior

QoI; 
e.g. moments
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expectation as 
function of hyper 
parameters

Bornn, L., Doucet, A., & Gottardo, R. (2010). An efficient computational approach for prior sensitivity analysis and cross-validation. 
Canadian Journal of Statistics, 38(1), 47–64.

Kallioinen, N., Paananen, T., Bürkner, P. C., & Vehtari, A. (2024). Detecting and diagnosing prior and likelihood sensitivity with power-
scaling. Statistics and Computing, 34(1), 1–27. 

Most of the existing work is based on some form of importance sampling…



Example: Nested expectations

∫θ
ϕ (I(θ)) q(θ)dθ = ∫θ

ϕ (∫𝒳
f(x; θ)π(x; θ)dx) q(θ)dθ



Example: Nested expectations

∫θ
ϕ (I(θ)) q(θ)dθ = ∫θ

ϕ (∫𝒳
f(x; θ)π(x; θ)dx) q(θ)dθ

Health economics: The expected value of perfect information is a nested 
expectation telling us whether it is worth going to do some (potentially 
expensive) tests on patients.



Example: Nested expectations

∫θ
ϕ (I(θ)) q(θ)dθ = ∫θ

ϕ (∫𝒳
f(x; θ)π(x; θ)dx) q(θ)dθ

Active learning/Bayesian optimisation: This comes up in acquisition functions 
when you want to select points for multiple function evaluations at a time.

Health economics: The expected value of perfect information is a nested 
expectation telling us whether it is worth going to do some (potentially 
expensive) tests on patients.



Example: Nested expectations

∫θ
ϕ (I(θ)) q(θ)dθ = ∫θ

ϕ (∫𝒳
f(x; θ)π(x; θ)dx) q(θ)dθ

Active learning/Bayesian optimisation: This comes up in acquisition functions 
when you want to select points for multiple function evaluations at a time.

Health economics: The expected value of perfect information is a nested 
expectation telling us whether it is worth going to do some (potentially 
expensive) tests on patients.

Many others… Bayesian experimental design, statistical divergences for 
conditional distributions, etc.. etc..
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Slow  
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Linear model  
might be poor

We will try to improve on this with GPs…

Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: A simple 
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θ1:T := [θ1, ⋯, θT]⊤ ∈ ΘT

xt
1:N := [xt

1, ⋯, xt
N]⊤ ∈ 𝒳N

f(xt
1:N, θt) := [ f(xt

1, θt), ⋯, f(xt
N, θt)]⊤ ∈ ℝN

̂IBQ(θ1), σ2
BQ(θ1), …, ̂IBQ(θT), σ2

BQ(θT),
Stage I: Compute  BQ posteriors:T

Stage II: Heteroscedastic GP regression over 
 with data from Stage I and likelihoodI(θ)

̂IBQ(θt) = I(θt) + ϵt, ϵt ∼ N (0,σ2
BQ(θt))
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Some remarks on CBQ

• Computational cost is .O(TN3 + T3)

• Need to pick one GP prior for , 
and one GP prior for . Can encode 
any prior knowledge!

x ↦ f(x; θt)
θ ↦ I(θ)

• We end up with a full (Gaussian process) 
posterior quantifying our uncertainty on !I(θ)

• Stage II likelihood accounts for the fact that 
some BQ estimators might be more 
accurate than others…
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• Theorem (informal): Under regularity assumptions including

• The samples  and  are iid from  and  respectively.{xt
i}

n
i=1 θ1, …, θT ℙθt

ℚ

•  has smoothness  and  has smoothness .f( ⋅ ; θ) sf > d /2 f(x; ⋅ ) sI > p/2
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Bayesian sensitivity in varying dims
• A well-known drawback of BQ is that it performs less well in high-dimensions.

• It also rate bears out in practice

• This shows in our convergence rate…

. . . L2(Θ) ≤ [ . . . ]N− s𝒳
d +ε + [ . . . ]
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Calibration of the CBQ posterior (d=2)

• The CBQ posterior tends to be poorly 
calibrated when the number of data 
points is extremely small

• But things get better for large  
(although we didn’t study this 
theoretically…)

N, T
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Bayesian sensitivity analysis for SIR
Setting: Bayesian sensitivity with  prior on infection rate. 
QoI: Expected peak number of infected individuals over time period.

Gamma(θ,10)

We get much faster convergence than alternatives!
The cost of doing CBQ is negligible compared 
to simulating from the SIR model accurately.
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Option pricing in finance
Setting: Pricing of butterfly call option using 
Black-Scholes formula. 

QoI: Nested expectation representing 
expected loss. 

This specific problem can be solved in 
closed-form, but is representative of option 
pricing which usually requires expensive 
simulations of SDEs….

CBQ significantly outperforms competitors! 

(Dotted lines is performance when )N = T = 1000
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Health economics

Setting: Expected value of perfect 
information in Health economics. 

QoI: Nested expectation representing 
expected value of collecting additional 
measurements from patients. 

This experiment is toy, but is representative 
of a challenging computational problem 
where each data point requires 
examining/testing a patient (expensive!!) Again much faster convergence! i.e. we 

need a lot less patients!
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Conclusion and future work
• We considered the problem of approximating parametric expectations 

and proposed a Bayesian algorithm to tackled this task, providing 
Bayesian UQ and a fast convergence rate.

• Plenty of work remaining including:

• Lower bounds on the error.

• Faster convergence in , the number of tasks.T

• Active learning for a task and across tasks.
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