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Abstract. Stein’s method compares probability distributions through the
study of a class of linear operators called Stein operators. While mainly stud-
ied in probability and used to underpin theoretical statistics, Stein’s method
has led to significant advances in computational statistics in recent years.
The goal of this survey is to bring together some of these recent develop-
ments, and in doing so, to stimulate further research into the successful field
of Stein’s method and statistics. The topics we discuss include tools to bench-
mark and compare sampling methods such as approximate Markov chain
Monte Carlo, deterministic alternatives to sampling methods, control variate
techniques, parameter estimation and goodness-of-fit testing.
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1. INTRODUCTION

Stein’s method was introduced by Charles Stein in the
early 1970s [150] for distributional comparisons to the
normal distribution. At the foundation of Stein’s method
lies a characterizing equation for the normal distribution.
This equation is also a cornerstone in Stein’s unbiased es-
timator of risk [153] and James–Stein shrinkage estima-
tors [89, 149]; see [54] for a joined-up view. The latter pa-
per also exploited these connections with Stein’s method
to propose and analyze new estimators in a non-Gaussian
setting. Here, we concentrate on Stein’s method for distri-
butional comparisons.

Originally developed for normal approximation, the
method was extended first to Poisson approximation by
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[36], then by a growing community to a growing col-
lection of approximation problems including beta, bino-
mial, gamma, Kummer-U, multinomial, variance-gamma,
Wishart and many more. Stein’s method has proved pow-
erful in particular for deriving explicit bounds on dis-
tributional distances even when the underlying random
elements are structures with dependence. Moreover, it
thrives when the target distribution is known only up to
a normalizing constant. Comprehensive introductions to
the theory and its applications are available in the mono-
graphs [10, 16, 37, 124, 151]. We also refer to the lecture
notes of [47] and the surveys of [15, 33, 98, 138]. The
websites https://sites.google.com/site/malliavinstein and
https://sites.google.com/site/steinsmethod provide regu-
larly updated lists of references.

Over the past few decades, Stein’s method has had sub-
stantial interactions with other mathematical fields, such
as Malliavin calculus, information theory, functional anal-
ysis, dynamical systems and stochastic geometry. Some
examples of applications of Stein’s method in theoreti-
cal statistics are as follows. Stein et al. [152] employed
the method for the analysis of sample quality in simu-
lations, [85] developed a bootstrap method for network
data which is analyzed via empirical processes, [141] ob-
tained a Berry–Esseen bound for Student’s t-statistic. Ap-
plications to self-normalized limit theorems and false dis-
covery rates in simultaneous tests are surveyed in [142].
In [143], an overview on the use of randomized con-
centration inequalities in Stein’s method for nonlinear
statistics is provided. Lippert, Huang and Waterman [102]
and [135] utilized the method to prove that there were
flaws in then commonly used statistics for alignment-free
sequence comparison, and subsequently introduced two
new sequence comparison statistics, which avoid these
flaws. This list is by no means exhaustive, but has the
goal to give the reader a first taste of the versatile usage
of Stein’s method in statistics.

Starting around 2015, these early and ongoing suc-
cesses of Stein’s method in theoretical statistics have at-
tracted the attention of researchers from computational
statistics and machine learning. Indeed, the fact that tar-
get distributions only need to be known up to a normal-
izing constant for Stein’s method to apply has sparked
considerable interest in these domains. Here, ingredients
from Stein’s method such as so-called Stein discrepan-
cies have been used to develop new methodological pro-
cedures based on Stein operators. The aim of this paper is
to cover various (clearly not all) developments that took
place in computational statistics and machine learning
since around 2015; the choice of topics is biased by the re-
search interests of the contributors. Related developments
in applications of Stein’s method in theoretical statistics
are also included. By this survey, we wish to bring Stein’s
method and its different ingredients to the attention of the

broad statistical community in order to further foster this
fertile research domain.

This paper starts with a succinct introductory section on
Stein’s method (Section 2), followed by Section 3, which
discusses the practical issue of computing Stein discrep-
ancies. Section 4 presents various new statistical and ma-
chine learning procedures for assessing sample quality as
well as constructing sample approximations and improv-
ing Monte Carlo integration, which are obtained by means
of Stein method ingredients. Section 5 details new devel-
opments for testing goodness-of-fit, which are based on
Stein’s method, and discusses novel insights into existing
inferential procedures such as the quality of asymptotic
approximation of estimators and test statistics as well as
the impact of the prior choice in Bayesian statistics. Sec-
tion 6 then provides some summarizing conclusions.

2. THE BASIC INGREDIENTS OF STEIN’S METHOD

Stein’s method provides a collection of tools permitting
to quantify the dissimilarity between probability distribu-
tions. The method has many components, not all of which
are pertinent to the present survey. The purpose of this in-
troductory section is to provide a succinct overview of the
basic ingredients, which shall be of use in the rest of the
paper.

First, we fix some notation. The distribution of a ran-
dom quantity X is denoted by L(X). Expectations with
respect to a probability distribution Q are denoted by
EX∼Q; sometimes the subscript is omitted when the con-
text is clear. The space Lp(Q) denotes the set of functions
such that EX∼Q[|f p(X)|] is finite.

The function IA(x) is the indicator function of x ∈ A,
taking the value 1 if x ∈ A and 0 otherwise. For R

d -
valued functions f and g, the notation 〈f,g〉 denotes the
inner product; if f and g are matrix-valued, it denotes the
Hilbert–Schmidt inner product. The notation Ck(Rd) de-
notes functions in R

d that are k times continuously differ-
entiable. The norm | · | is the absolute value, ‖ · ‖2 the Eu-
clidean norm and ‖ ·‖∞ denotes the supremum norm. The
operator ∇ denotes the gradient operator; the gradient of a
smooth function v :Rd →R is the vector valued function
∇v with entries (∇v)i = ∂iv, i = 1, . . . , d , by convention
viewed as column vector. For a d-vector-valued function
v :Rd →R

d with components vj , j = 1, . . . , d , the diver-
gence is div(v) = ∇ᵀv = ∑d

i=1 ∂ivi(x). For a vector or a
matrix, the superscript ᵀ stands for the transpose; this also
applies for vector- or matrix-valued operators. Finally, by
convention, 0/0 = 0.

2.1 Stein Operators, Stein Discrepancies and Stein
Equations

The starting point of Stein’s method for a target proba-
bility distribution P on some set X consists in identifying
a linear operator T acting on a set G(T ) of functions on
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X such that, for any other probability measure Q on X , it
holds that

Q = P iff EX∼Q

[
(T g)(X)

] = 0

∀g ∈ G(T ).
(1)

Such an operator T is called a Stein operator, the collec-
tion G(T ) of functions for which EX∼P [(T g)(X)] = 0 is
called a Stein class, and equivalence (1) is called a Stein
characterization. In many cases, the characterizing nature
of the operator is superfluous, and we only need to re-
quire that a Stein identity for P is satisfied, namely that
EX∼P [(T g)(X)] = 0 for all g ∈ G(T ). Through a Stein
identity, we only have a guarantee that the expectations
taken against P vanish, but they could also be zero when
taken against some Q �= P .

We will discuss the topic of choosing Stein operators
in Section 2.2. At this stage, let us suppose that we are
given a characterizing Stein operator T with Stein class
G(T ). Then, for any Stein set G ⊂ G(T ), one may define
a dissimilarity measure as

S(Q,T ,G) = sup
g∈G

∥∥EX∼Q

[
(T g)(X)

]∥∥∗(2)

for some appropriate norm ‖ · ‖∗. By construction, if
S(Q,T ,G) �= 0, then Q �= P and, if G is sufficiently
large, then S(Q,T ,G) = 0 also implies Q = P . Gorham
and Mackey [69] call the quantity (2) a Stein discrepancy
(in contrast to the use of the term in [96]). If the Stein
operator T and the Stein set G ⊂ G(T ) are well chosen,
the Stein discrepancy S(Q,T ,G) ought to capture some
aspect of the dissimilarity between P and Q. Part of the
magic of Stein’s method lies in the fact that there are nu-
merous combinations of target distribution P and approx-
imating distribution Q for which one can identify opera-
tors T and sets G ensuring that the quantity S(Q,T ,G) is
both tractable and relevant.

As an illustration, we now give an example of Stein
discrepancy for quantifying the dissimilarity between any
probability distribution Q on R

d and the normal distribu-
tion.

EXAMPLE 1 (Stein operator and discrepancy for the
multivariate normal distribution). Let � be a d × d pos-
itive definite matrix; denote by Nd(0,�) the centered
multivariate normal with covariance �. Let g : Rd → R

be almost differentiable, that is, possess a gradient ∇g :
R

d → R
d such that, for all z ∈ R

d , g(x + z) − g(x) =∫ 1
0 〈z,∇g(x + tz)〉dt for almost all x ∈ R

d . Suppose fur-
thermore that ∇g ∈ L1(Nd(0,�)). Then

EX∼Nd (0,�)

[
�∇g(X) − Xg(X)

] = 0;
see, for example, [153] (for � the identity matrix). We
deduce that the first-order differential operator

(T g)(x) = �∇g(x) − xg(x)(3)

is a Stein operator for Nd(0,�) acting on the Stein class
G(T ) of all almost differentiable functions with (almost
everywhere) gradient ∇g ∈ L1(Nd(0,�)). This leads to

(4) S(Q,T ,G) = sup
g∈G

∥∥EX∼Q

[
�∇g(X) − Xg(X)

]∥∥
2,

for any G ⊂ G(T ).

Of course it remains to ensure that the dissimilarity
measures herewith obtained actually capture relevant as-
pects of the dissimilarity between P and Q. Classically,
there are many ways to determine discrepancies between
probability measures; see, for example, [63, 131]. In this
survey, and in much of the literature on Stein’s method,
the focus is on distances known as integral probability
metrics (IPMs, for short) [123, 173], which are defined as

dH(P,Q) := sup
h∈H

∣∣EX∼P

[
h(X)

] −EX∼Q

[
h(X)

]∣∣(5)

for some class of real-valued measurable test functions
H ⊂ L1(P ) ∩ L1(Q). When dH is a distance on the set
of probability measures on X then H is called measure
determining.

REMARK 1. Different choices of H give rise to dif-
ferent IPMs, including:

1. the Kolmogorov distance: dKol(P,Q), which is the
IPM induced by the set of test functions HKol =
{I(−∞,x](·) : x ∈ R

d} (indicators of bottom left quad-
rants);

2. the L1-Wasserstein distance (also known as the
Kantorovich–Rubinstein or earth-mover’s distance):
dW(P,Q), which is the IPM induced by the set of
test functions HW = {h : Rd →R : supx �=y∈Rd |h(x) −
h(y)|/‖x − y‖2 ≤ 1} (functions with Lipschitz con-
stant at most 1);

3. the bounded Wasserstein distance (also known as the
Dudley or bounded Lipschitz metric): dbW(P,Q),
which is the IPM induced by the set of test functions
HbW, which collects the bounded functions in HW;

4. the maximum mean discrepancy: dk(P,Q), which is
the IPM induced by the set of test functions Hk , the
unit-ball of some reproducing kernel Hilbert space
[26] associated with kernel k. This case will be dis-
cussed extensively in Section 3.

To see the connection between IPMs dH and Stein
discrepancies S , an additional ingredient enters the pic-
ture: the Stein equation. Given P the target distribution
with Stein operator T and Stein class G(T ), and given
H ⊂ L1(P ) a measure-determining class of test functions,
the Stein equation for h ∈ H is the functional equation

(T g)(x) = h(x) −EX∼P

[
h(X)

]
(6)

evaluated over x ∈ X , with solution g = g(h) := Lh ∈
G, if it exists. Assuming that this solution exists for all
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h ∈ H, it follows that EX∼Q[h(X)] − EX∼P [h(X)] =
EX∼Q[(T (Lh))(X)] so

dH(P,Q) = sup
h∈H

∣∣EX∼P

[
h(X)

] −EX∼Q

[
h(X)

]∣∣
= S(Q,T ,LH),

with LH the Stein set collecting all solutions Lh to the
Stein equation (6) with h ∈ H. Existence of a solution to
the Stein equation depends on the properties of the target
measure P , of the Stein operator T , and of the Stein class
G(T ). In many cases, existence of these solutions is guar-
anteed and the IPMs listed in Remark 1 can be rewritten
as Stein discrepancies whose underlying Stein set LH de-
pends on the measure P characterized by T through (6).

Often, bounding EX∼Q[h(X)] − EX∼P [h(X)] through
bounding EX∼Q[(T (Lh))(X)] is advantageous as the lat-
ter only requires integrating under Q; the properties of P

have been encoded in the Stein operator and Stein class.
Commonly used approaches for bounding Stein discrep-
ancies are coupling techniques [16, 37, 133, 138], the
Malliavin–Stein method [124] and comparison of Stein
operators [84, 98, 121]; here, the references only serve as
pointers and the list is certainly not complete. In the con-
text of theoretical statistics, IPM-based Stein discrepan-
cies have been used for investigating finite-sample perfor-
mance of statistical estimators with intractable exact dis-
tribution and known asymptotic behavior (here, thus Q is
the exact distribution of some statistical procedure, and P

its asymptotic distribution). An overview of some of these
applications is provided in Section 5.

In order to bound EX∼Q[(T (Lh))(X)], suitable bounds
on the solutions Lh of the Stein equation, as well as cer-
tain lower-order derivatives or differences of the solution,
are usually required (although sometimes weak solutions
of an appropriate equation suffice; see [43, 121]). Bounds
on the solution are often referred to as Stein factors. De-
termining Stein factors has attracted attention in recent
years. Of the many available references, we single out
[53, 116] where bounds are obtained for operators given
in the setting of Example 2 under assumptions of log-
concavity, and [68], where Stein factors are obtained un-
der the weaker assumption of integrable Wasserstein de-
cay. An overview for continuous distributions is given in
[121].

In this section, we have kept H, or equivalently dH,
mainly general, so that the task of deriving a Stein equa-
tion and bounds on Stein factors can be presented in a
form which applies to any of the IPMs in Remark 1.

2.2 Choosing Stein Operators

When tackling Stein’s method for a general target via
a Stein discrepancy S(Q,T ,G), it is important to first
choose T and G in a way which ensures relevance and
tractability of the resulting metric or Stein discrepancy.

For many target distributions, such useful Stein opera-
tors and Stein sets are readily available from the litera-
ture. One of the advantages of Stein’s method, however,
is that for a given P there is in principle full freedom of
choice in the operator T and Stein set G, and in particular
no need to restrict to the operators from the literature nor
Stein sets obtained from Stein equations.

Here, we shall mainly concentrate on two approaches
for choosing a Stein operator, called the generator ap-
proach (which dates back to [13, 14] and [72]) and the
density approach (which dates back to [152]). These are
not the only available approaches (see, e.g., [134]) and
we conclude the section with a brief pointer to other tech-
niques.

2.2.1 Stein operators via the generator approach. We
first describe the generator approach, which we present
for a given target P on X = R

d . Given a Markov process
with sufficient regularity (Zt )t≥0 (namely, a Feller pro-
cess [129], Lemma 8.1.4) with invariant measure P , the
infinitesimal generator A of the process given by

(Au)(x) = lim
t→0

1

t

(
E

[
u(Zt) | Z0 = x

] − u(x)
)

satisfies the property that EZ∼P [(Au)(Z)] = 0 for all
u : Rd → R in the domain of A. Barbour [13, 14] and
[72] exploited this fact to provide both a Stein operator
and a Stein class for all targets P that are invariant mea-
sures of sufficiently regular Markov processes, to analyze
multivariate distributions via Stein’s method.

Gorham et al. [68] detailed the generator approach for a
wide range of distributions of interest by using operators
induced by Itô diffusions. An Itô diffusion [129], Defini-
tion 7.1.1, with starting point x ∈ R

d , Lipschitz drift co-
efficient b : Rd → R

d , and Lipschitz diffusion coefficient
σ : Rd → R

d×m is a stochastic process (Zt,x)t≥0 solving
the Itô stochastic differential equation

dZt,x = b(Zt,x)dt + σ(Zt,x)dWt(7)

with Z0,x = x ∈ R
d , where (Wt)t≥0 is a m-dimensional

Brownian motion. It is known (see, e.g., [68], Theorem 2,
and [20], Theorem 19) that equation (7) will have invari-
ant measure P with density p, which is positive and dif-
ferentiable if and only if b(x) = 〈∇,p(x)[σ(x)σ (x)ᵀ +
c(x)]〉/2p(x) where the stream coefficient c : Rd →R

d×d

is some differentiable skew-symmetric valued function.
[68] proposed the first-order diffusion Stein operator

(T g)(x)

= 1

p(x)

〈∇,p(x)
[
(σ (x)σ (x)ᵀ + c(x)

]
g(x)

〉
,

(8)

based on the diffusion’s second-order infinitesimal gen-
erator Au = T (∇u/2). Under regularity conditions, the
definition in equation (8) yields an infinite collection of
Stein operators for a given target P , parametrized by the
choice of σ and c.
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EXAMPLE 2 (The Langevin–Stein operator on R
d ).

As a concrete example, [69, 116] consider the case where
σ ≡ Id and c ≡ 0, which corresponds to the overdamped
Langevin diffusion. Assuming EX∼P [‖∇ logp(X)‖2] <

∞, this induces the Langevin–Stein operator

(T g)(x) = 〈∇ logp(x), g(x)
〉 + 〈∇, g(x)

〉
.(9)

The corresponding Stein discrepancies from equation (2)
are often called Langevin–Stein discrepancies.

2.2.2 Stein operators via the density approach. The
density approach was pioneered in [152] for univariate
distributions, and has since then been generalized in mul-
tiple directions; see, for example, [121, 164]. Given a
probability measure P on a set X with density function
(with respect to some dominating measure) p : X → R

+,
consider operators of the form g �→ D(g(x)p(x))/p(x),
where D is a linear operator with domain dom(D). Col-
lecting into the class G all functions g on X such that
x �→ p(x)g(x) ∈ dom(D) and

∫
X D(g(x)p(x))dx = 0,

the D- density, or for short, density Stein operator of the
density approach for p is

g �→ (T g)(x) = D(g(x)p(x))

p(x)

with Stein class G(T ) = G. By construction, this opera-
tor satisfies EX∼P [(T g)(X)] = 0 for all g ∈ G(T ). The
following example illustrates the approach for univariate
distributions with interval support.

EXAMPLE 3 (Density operators for the exponential
distribution). Fix d = 1 and consider as target P the
exponential distribution with density function p(x) =
λe−λx

I[0,∞)(x), for λ > 0. A natural choice of D is
Df (x) = f ′(x) the usual almost everywhere derivative.
If (gp)′ is integrable on R

+, then
∫ ∞

0 (g(x)p(x))′ dx =
limx→∞ g(x)p(x) − λg(0). The corresponding density
operator is therefore

(T g)(x) = (g(x)p(x))′

p(x)
= g′(x) − λg(x), x ∈ R

+,

acting on the Stein class of functions g such that (gp)′
is integrable on R

+ and limx→∞ g(x)p(x) = λg(0).
Clearly, all functions g(x) = xg0(x) such that
limx→∞ xg0(x)e−λx = 0 belong to G(T ). Denoting G̃ the
collection of functions of this form, we reap a second op-
erator for the exponential given by

(T1g0)(x) = (xg0(x)e−λx)′

e−λx
= xg′

0(x) + (1 − λx)g0(x)

acting on the (restricted) Stein class G̃. The advantage of
the latter operator over the former is that it does not re-
quire any implicit boundary assumptions on the test func-
tions.

Since the exponential density is also a parametric scale
family in its parameter λ > 0, another natural derivative

in this context is Df (x;λ) = d
dλ

f (x;λ) for all functions
f (x;λ) of the form f (x;λ) = λf0(λx) for some f0. This
leads to

(T2g)(x) =
d

dλ
(λg(λx)e−λx)

(λe−λx)

= xg′(λx) +
(

1

λ
− x

)
g(λx),

with no boundary assumptions on g since

EX∼Exp(λ)

[
(T2g)(X)

] = d

dλ

(∫ ∞
0

g(u)e−u du

)
= 0

for all g ∈ L1(Exp(1)).

Many choices of operator D lead to Stein operators.
Moreover, using appropriate product rules, Stein opera-
tors can be tailored for the specifics of the problem at
hand. This process is called standardizing the Stein op-
erator; see [95] and [65].

The density approach and the generator approach are
by no means the only methods for obtaining Stein oper-
ators. Other popular approaches include couplings ([35]),
orthogonal polynomials ([64]), a perturbation approach
([17]), an ODE approach ([58]) and characteristic func-
tions ([10, 156]).

2.2.3 Some general remarks on Stein operators. A
Stein operator can often be found even when the density
of the target distribution is not available in closed form,
which will be particularly useful for applications in statis-
tics. In this context, we highlight two classes of important
problems:

2.2.3.1 Bayesian computation. In Bayesian statistics,
usually the posterior distribution is known only in an
unnormalized form. This is not a hindrance for Stein’s
method; see [99]. Take, for example, the Langevin–Stein
operator of Example 2: (T g)(x) = 〈∇ logp(x), g(x)〉 +
〈∇, g(x)〉. Any function of the form (T g) can be eval-
uated pointwise provided that ∇ logp can be evaluated,
which is often a reasonable requirement. In particular,
this does not require knowledge of the normalizing con-
stant of p, since if p = p̃/C for C > 0, then ∇ logp =
∇ log p̃ − ∇ logC = ∇ log p̃. In fact, ∇ logp is usually
the basis of gradient-based Markov chain Monte Carlo al-
gorithms to sample from posterior distributions. Illustra-
tions of this principle can be found in [68] and [121], for
instance.

2.2.3.2 Intractable likelihood. A second example in-
cludes models in which the likelihood itself is unnormal-
ized, in which case the model is often called a Gibbs
distribution. For these, �(θ;x) ∝ �̃(θ, x), where �̃(θ, x)

can be pointwise evaluated. Once again, working with
∇x log�(θ;x) may be practical even when the normaliz-
ing constant is an intractable integral. Furthermore, when
the likelihood can be written as the density of a natural



STEIN’S METHOD MEETS COMPUTATIONAL STATISTICS 125

exponential family model, ∇x log�(θ;x) becomes linear
in θ , which is particularly useful in the development of
new statistical methodology based on the Langevin–Stein
operator (see [21, 117]).

3. COMPUTABLE STEIN DISCREPANCIES

As mentioned in Section 2.1, many authors use Stein’s
method to assess IPMs between a target P and some
approximating measure Q by using Stein discrepan-
cies computed over sets G consisting of solutions to
Stein equations. In this section, we will now show how
Stein discrepancies may sometimes be computed exactly
through a particular choice of Stein set (this issue was in
fact already identified by [152]). Exact computation turns
out to be possible when comparing an empirical measure
Qn = n−1 ∑n

i=1 δxi
, with data points xi ∈ X , δxi

giving
all probability mass to xi , to a given target distribution P .
We will call any such discrepancy a computable Stein dis-
crepancy.

The most common choice of computable discrepancies
are the so-called kernel Stein discrepancies (KSD), which
use the unit-ball of a reproducing kernel Hilbert space
(RKHS) as a Stein set, and can therefore be considered
the Stein discrepancy counterpart to the maximum mean
discrepancy IPM [74, 75, 145]. An RKHS Hk is a Hilbert
space (with norm ‖.‖k and inner product 〈·, ·〉k) with an
associated function k : X ×X →R satisfying (i) symme-
try; k(x, y) = k(y, x) for all x, y ∈ X , (ii) positive defi-
niteness;

∑n
i,j=1 cicj k(xi, xj ) ≥ 0 for all ci ∈ R, xi ∈ X

and (iii) the reproducing property f (x) = 〈k(x, ·), f 〉k for
all f ∈ Hk , x ∈ X . The function k is called a reproducing
kernel [9, 139]. This choice of Stein set was inspired by
the zero mean reproducing kernel theory of [127], used in
[42, 70, 108] and extended in [154] to the case of matrix-
valued kernels. The main advantage is that the supremum
in (2) can be analytically computed in terms of the repro-
ducing kernel:

EXAMPLE 4 (Langevin Kernel Stein discrepancies).
The Langevin KSD on X = R

d is obtained by com-
bining the Langevin–Stein operator T from Example 2
with a kernel Stein set Gk := {g = (g1, . . . , gd) | ‖v‖2 ≤
1 for vj := ‖gj‖k}:

KSDk(Q) := S(Q,T ,Gk)

=
√
EX,X′∼Q

[
kP

(
X,X′)],(10)

where the Stein reproducing kernel is given by

kP

(
x, x′) := Trace

(
TxTx′k

(
x, x′))

= 〈∇x,∇x′k
(
x, x′)〉

+ 〈∇xk
(
x, x′),∇x′ logp

(
x′)〉(11)

+ 〈∇x′k
(
x, x′),∇x logp(x)

〉
+ k

(
x, x′)〈∇x logp(x),∇x′ logp

(
x′)〉.

Here, the subscript in Tx indicates that the input of T is
seen as a function of x. Most notably, this Stein reproduc-
ing kernel satisfies EX∼P [kP (X,x)] = 0 for all x ∈ R

d

under mild regularity conditions (see [127]). Whenever
the approximating measure is Qn = n−1 ∑n

i=1 δxi
, the

Langevin KSD has the simple closed form

KSDk(Qn) = S(Qn,T ,Gk)

=
√√√√ 1

n2

n∑
i,j=1

kP (xi, xj ).
(12)

The most common choice of kernel k is the inverse
multiquadric kernel k(x, y) = (c2 + ‖x − y‖2

2)
β , c > 0,

β ∈ (−1,0). This is because [70], Theorem 8, showed
that, if ∇ logp is sufficiently regular, then Qn converges
weakly to P whenever KSDk(Qn) → 0. We will return
to the implications of this in Section 4.1.

Extensions of the Langevin KSD include [21], who
used the infinitesimal generator of general Itô diffusions
to get a family of diffusion kernel Stein discrepancies;
[164] to discrete sets X ; [22] to the case where X is a
Riemannian manifold, such as in directional statistics.

A second type of computational Stein discrepancies are
the graph Stein discrepancies (GSDs) of [68, 69].

EXAMPLE 5 (Graph Stein discrepancies). The graph
Stein discrepancies combine a diffusion Stein operator T
as in (8) with a graph Stein set

G‖·‖,Qn,E

=
{
g : max

(∥∥g(v)
∥∥∞,

∥∥∇g(v)
∥∥∞,

‖g(x) − g(y)‖∞
‖x − y‖1

,
‖∇g(x) − ∇g(y)‖∞

‖x − y‖1

)
≤ 1,

‖g(x) − g(y) − ∇g(x)(x − y)‖∞
1
2‖x − y‖2

1

≤ 1,

‖g(x) − g(y) − ∇g(y)(x − y)‖∞
1
2‖x − y‖2

1

≤ 1,

∀(x, y) ∈ E,v ∈ supp(Qn)

}
,

where ∇g denotes the Jacobian matrix of g and E is a set
of pairs of the form (xi, xj ), which must be taken suffi-
ciently large to ensure that the GSD has Wasserstein con-
vergence control [69], Theorem 2, Propositions 5 and 6.

Once again, the Stein set is selected so that the discrep-
ancy can be computed efficiently. The GSD is actually the
solution of a finite-dimensional linear program, with the
size of E as low as linear in n, implying that it can be
efficiently computed.

While computable, both KSDs and GSDs suffer from a
computational cost that grows at least quadratically in the
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sample size n. There exist at least two practical options
for large sample sizes. The finite set Stein discrepancies of
[90] achieve a linear runtime by learning a small number
of adaptive features based on Stein-transformed kernels,
so as to distinguish P from Q samples with maximum test
power. The random feature Stein discrepancies of [87] ap-
proximate a broad class of convergence-determining Stein
discrepancies in near-linear time using importance sam-
pling. To reduce the computational cost of Stein discrep-
ancies in high dimensions, the sliced Stein discrepancies
of [67] can be used.

Finally, the computation of a Stein discrepancy can also
be prohibitive if the Stein operator is expensive to evalu-
ate. This commonly occurs in Bayesian and probabilis-
tic inference where T = ∑L

l=1 Tl is a sum over likelihood
terms or potentials which are each more easily evaluated
than T itself. To address this deficiency, [71] introduced
stochastic Stein discrepancies (SSDs)

SS(Qn,T ,G) := sup
g∈G

∣∣∣∣∣Ln
n∑

i=1

(Tσi
g)(xi)

∣∣∣∣∣(13)

for σi
i.i.d.∼ Unif({1, . . . ,L}). They showed that SSDs in-

herit the convergence control properties of standard dis-
crepancies with probability 1. In [163], for a special case
of a stochastic Stein discrepancy, Stein’s method is used
to establish its asymptotic normality.

4. NEW STATISTICAL METHODS FOR ASSESSING
SAMPLE QUALITY, CONSTRUCTING SAMPLE
APPROXIMATIONS AND IMPROVING MONTE

CARLO INTEGRATION

This section details how ingredients from Stein’s
method have been successfully used to uncover method-
ological tools and procedures, and discusses a range of
recent applications of Stein’s method in computational
statistics and machine learning. Section 4.1 shows how
computable Stein discrepancies can be employed to quan-
tify the quality of approximate MCMC schemes. Sec-
tion 4.2 introduces a variety of ways of using Stein’s
method to construct and improve a sample approxima-
tion, including Stein variational gradient descent (Sec-
tion 4.2.1), Stein points (Section 4.2.2) and Stein thin-
ning (Section 4.2.3). Section 4.3 describes Stein-based
control variates for improved Monte Carlo integration,
Section 4.4 presents statistical estimators, and Section 5
details goodness-of-fit tests.

4.1 Measuring Sample Quality

This section presents practical tools based on Stein’s
method for computing how well a given sample, repre-
sented as an empirical measure Qn = n−1 ∑n

i=1 δxi
, ap-

proximates a given target distribution P . This line of
work was motivated by the approximate Markov chain

Monte Carlo (MCMC) revolution in which practitioners
have turned to asymptotically biased MCMC procedures
that sacrifice asymptotic correctness for improved sam-
pling speed (see, e.g., [1, 93, 161]). The reasoning is
sound—the reduction in Monte Carlo variance from faster
sampling can outweigh the bias introduced, but stan-
dard Monte Carlo diagnostics like effective sample size,
asymptotic variance, trace and mean plots and pooled and
within-chain variance diagnostics presume eventual con-
vergence to the target distribution, and hence do not ac-
count for asymptotic bias. To address this deficiency, [69–
71, 87] introduced the computable Stein discrepancies of
Section 3 as measures of sample quality suitable for com-
paring asymptotically exact, asymptotically biased, and
even deterministic sample sequences {x1, . . . , xn}.

4.1.1 Graph Stein discrepancies. [69] used the GSDs
of Example 5 to select and tune approximate MCMC sam-
plers, assess the empirical convergence rates of Monte
Carlo and quasi-Monte Carlo procedures, and quantify
bias-variance tradeoffs in posterior inference. An illustra-
tive example is given in Figure 1. These applications were
enabled by a series of analyses establishing that the GSD
converges to 0 if and only if its empirical measure Qn

converges to P . Specifically, [52, 68, 116] bounded the
GSD explicitly above and below by Wasserstein distances
whenever the diffusion underlying the Stein operator cou-
ples quickly and has pseudo-Lipschitz drift.

4.1.2 Kernel Stein discrepancies. The closed form of
the KSDs of Example 4 represents a significant practi-
cal advantage for sample quality measurement, as no lin-
ear program solvers are necessary, and the computation
of the discrepancy can be easily parallelized. However,
[70] showed that not all KSDs are suitable for measuring
sample quality. In particular, in dimension d ≥ 3, KSDs
based on popular kernels like the Gaussian and Matérn
kernels fail to detect when a sample is not converging
to the target, even when the target is normal. To address
this shortcoming, [70] developed a theory of weak conver-
gence control for KSDs and designed a class of KSDs that
provably control weak convergence for a large set of tar-
get distributions (see [40, 87] for further developments).
These convergence-determining KSDs have been shown
to deliver substantial speed-ups over the original GSDs in
higher dimensions [70].

4.1.3 Random feature Stein discrepancies. To identify
a family of convergence-determining discrepancy mea-
sures that can be accurately and inexpensively approxi-
mated with random sampling, [87] introduce a new do-
main for the Stein operator using a feature function, giv-
ing rise to a feature Stein set and a corresponding feature
Stein discrepancy. The feature Stein discrepancy is then
approximated using importance sampling, which results a
random feature Stein discrepancy (R
SD). Higgins and
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FIG. 1. Selecting the step size ε for stochastic gradient Langevin dynamics [161], a popular approximate MCMC algorithm designed for scal-
ability. Standard MCMC diagnostics like effective sample size (ESS) do not account for asymptotic bias and select overly large ε with greatly
overdispersed samples (right panel). Overly small ε leads to slow mixing (left panel). The Stein discrepancy selects an intermediate value offering
the best approximation (center panel). Figure reproduced from [69], Figure 3.

Mackey [87] showed that R
SDs upper bound standard
discrepancy measures with high probability. This trans-
lates into high-probability convergence control whenever
the approximating sample sequence is uniformly inte-
grable.

4.2 Constructing and Improving Sample
Approximation

Popular stochastic Monte Carlo methods such as
MCMC provide a standard approach for constructing and
improving a sample-based approximation of the form
Qn = n−1 ∑n

i=1 δxi
for an intractable distribution P of in-

terest. In this section, we explain how Stein’s method can
be used to develop a suit of optimization-based alterna-
tives to Monte Carlo methods. We demonstrate this with
three examples: Section 4.2.1 introduces Stein variational
gradient descent, a gradient based algorithm that itera-
tively updates the location of the particles {x1, . . . , xn} to
improve the approximation quality w.r.t P . Section 4.2.2
introduces Stein Points, a greedy algorithm that constructs
the approximation by sequentially adding the particles to
minimize KSD. Section 4.2.3 introduces Stein Thinning,
which compresses an existing approximation using KSD.

4.2.1 Sampling with Stein variational gradient. Let P

be a distribution with a continuously differentiable den-
sity function p supported on X . We want to find a set of
points {x1, . . . , xn} ⊂ X , which we refer to as particles,
such that its empirical measure Q gives a close approx-
imation to P . Stein variational gradient descent (SVGD)
[111] achieves this by iteratively updating the particles to
minimize the KL divergence between Q and P , which is
made possible by exploiting an intrinsic connection be-
tween KL divergence and Stein’s method, as follows.

For the purpose of derivation, we assume for now that
Q is a continuous distribution with a finite KL divergence

KL(Q‖P) < ∞. We want to recursively “transport” the
probability mass of Q with a deterministic map to move
it closer to P in order to decrease KL(Q‖P) as fast as
possible. Specifically, we consider mappings of the form


(x) = x + εg(x),

where ε is a small positive scalar that serves as a step
size, and g : X → X is a one-to-one mapping that serves
as the velocity field. Denote by 
�Q the distribution of

(X) when X ∼ Q; this is also called the pushforward
measure.

The key challenge is to optimally choose g for each
given Q, so that the KL divergence between 
�Q and
P is decreased as much as possible. Assuming ε is in-
finitesimal, the optimal choice of g can be framed into a
functional optimization problem:

max
g∈G

{
− d

dε
KL(
�Q‖P)|ε=0

}
,(14)

where the negative derivative − d
dε

KL(
�Q‖P)|ε=0 mea-
sures the decreasing rate of KL divergence under the
transport map 
 as we increase the step size ε starting
from zero, and G is a function space that specifies the can-
didate set of g. The key observation is that the objective in
(14) is in fact equivalent to the expectation EQ[(T g)(X)]
of the Langevin–Stein operator.

THEOREM 1. Assume P and Q have positive densi-
ties on X = R

d , and the density p of P is in C1(Rd). Let

(x) = x + εg(x), where ε ∈R and g : Rd →R

d is a C1

map with supx∈Rd ‖∇g(x)‖2 < ∞, where ‖·‖2 denotes the
spectral norm. We have

− d

dε
KL

(

�Q‖P )|ε=0 = EX∼Q

[
(T g)(X)

]
,

where (T g)(x) = 〈∇ logp(x), g(x)〉 + 〈∇, g(x)〉.
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Theorem 1 draws an intriguing connection between
Stein’s method, the KL divergence and optimal transport.
It shows that (14) is equivalent to the optimization in
Langevin KSD:

KSDk(Q) = max
g∈G

{
EX∼Q

[
(T g)(X)

]}
= max

g∈G

{
− d

dε
KL(
�Q‖P)|ε=0

}
.

(15)

Therefore, the Langevin KSD can be interpreted as the
maximum decreasing rate of KL divergence between Q

and P under the best transport map in G. Taking G to be
the unit ball of the RKHS with kernel k, we can solve
equation (15) in closed form (see Example 4):

(16) g∗
Q,P (·) ∝ EX∼Q

[∇ logp(X)k(X, ·) + ∇xk(X, ·)].
This yields the best update direction for “transporting”
particles from Q to P under KL divergence. In practice,
we take Q = n−1 ∑n

i=1 δxi
to be the empirical measure of

the particles while iteratively updating {x1, . . . , xn} by us-
ing the optimal transport map found above, 
∗

Q,P (x) =
x + εg∗

Q,P (x). This yields the following simple update
rule on the particles, which is illustrated in the left panel
of Figure 2:

xi ← xi + ε

n

n∑
j=1

(∇ logp(xj )k(xj , xi)

+ ∇xj
k(xj , xi)

)
,

(17)

for all i = 1, . . . , n. The two terms in (17) play intuitive
roles. The term with the gradient ∇ logp pushes the par-
ticles toward the high probability regions of P , while the
term with ∇xk can be viewed as a repulsive force to en-
force the diversity between the particles if k is a stationary
kernel of form k(x, x′) = φ(x −x′): in this case, perform-
ing x′

i ← xi + ε∇xj
k(xj , xi) would decrease k(xi, xj ),

which measures the similarity between xi and xj , when
ε is sufficiently small. If there is no repulsive force, or
when there is only a single particle (and the kernel sat-
isfies ∇xk(x, x′) = 0 for x = x ′), the solution would col-
lapse to the local optima of logp, reducing to the maxi-
mum a posteriori (MAP) point. Therefore, by using dif-
ferent particle sizes, SVGD provides an interpolation be-
tween MAP to a full particle-based approximation.

SVGD defines a deterministic interacting particle sys-
tem in which {x1, . . . , xn} interact and coevolve to reach a
desirable equilibrium. For understanding SVGD asymp-
totically, [107] considers the limit of large particle size
(n → ∞) and continuous time (ε → 0), and interprets
SVGD as a gradient flow of KL divergence induced by a
kernel-Wasserstein geometric structure on the infinite di-
mensional space of distributions; a set of theoretical stud-
ies along this line can be found in [41, 49, 71, 94, 105,

FIG. 2. Sampling with Stein’s method. Top: The initial (transparent
red) and final (red) states of eight particles, together with their trajec-
tories (black) under the Stein variational gradient descent algorithm
in (17). Middle: The first 8 states (red) of an extensible sequence pro-
duced by the Stein points algorithm in (18). The order in which the
states are selected is indicated. Bottom: The first eight representative
states (red) selected from a Markov chain sample path (black), ac-
cording to (19). (Grey contours are shown for the distributional target,
which in each case the red states are intended to represent.)

115, 125]. In the nonasymptotic regime of a finite num-
ber n of particles, SVGD acts like a numerical quadra-
ture method in which the particles are arranged to exactly
estimate the true expectation of a set of special basis func-
tions determined by the Stein operator and kernel function
[112].

SVGD has been extended and improved in various
ways. For example, amortized SVGD [55] learns neu-
ral samplers in replacement of particle approximation;
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gradient-free SVGD [78] provides an extension that re-
quires no gradient information of the target distribution
P ; a number of other extensions and improvements can
be found in, for example, [34, 38, 45, 66, 71, 77, 101,
104, 158–160, 172]. SVGD has found applications in a
variety of problems including in deep learning (e.g., [130,
157]), reinforcement learning (e.g., [76, 103, 114]), meta
learning (e.g., [55, 92]) and uncertainty quantification in
science and engineering (e.g., [167–170]).

4.2.2 Sampling with Stein points. The Stein points [39,
40] approach progressively constructs a set of points
{x1, . . . , xn} ⊂X to approximate P by minimizing a Stein
discrepancy. For example, the KSD can be minimized in
a sequential greedy manner: x1 ∈ argminx∈XKSDk({x})
and

(18) xn ∈ argmin
x∈X

KSDk

({x1, . . . , xn−1, x}) for n > 1,

where KSDk({x1, . . . , xn}) = S(Qn,T ,Gk) and Gk is a
kernel Stein set; then the set {x1, . . . , xn} is selected as
to approximately minimize this KSD. A typical sequence
obtained in this way is presented in the middle panel of
Figure 2.

Finding the global minima in equation (18) may be
difficult. However, [40], Theorem 2, showed that even
imperfect optimization methods can lead to a fast de-
crease of the KSD. More precisely, if kP in equation (11)
satisfies PX∼P (kP (X,X) ≥ t) ≤ b1e−b2t for some con-
stants b1, b2 > 0 and all t ≥ 0, then there exist constants
c1, c2 > 0 depending only on kP and P such that any
n ∈ N and {x1, . . . , xn} ⊂X satisfying

KSDk

({x1, . . . , xj })2

≤ δ

n2 + min
x∈X :kP (x,x)≤ 2 log(j)

c2

KSDk

({x1, . . . , xj−1, x})2

for all j = 1, . . . , n, lead to an upper bound on the KSD
of the form

KSDk

({x1, . . . , xn}) ≤ eπ/2

√
2 log(n)

c2n
+ c1

n
+ δ

n
.

Thus, KSD can be used to transform the sampling prob-
lem of approximating P into an optimization problem that
admits a provably convergent numerical method.

4.2.3 Stein thinning. [137] use KSD in a post-
processing approach to select states from a large pre-
determined candidate set, with application to debiasing
MCMC output. Their approach can be summarized as

x1 ∈ argmin
x∈{X1,...,XN }

KSDk

({x}),
xn ∈ argmin

x∈{X1,...,XN }
KSDk

({x1, . . . , xn−1, x})(19)

for n > 1, where (Xi)i=1,...,N is a Q-invariant Markov
chain; Q and P need not be equal. A typical sequence
obtained in this way is presented in the right panel of
Figure 2. These authors extended earlier convergence re-
sults to prove almost sure weak convergence of Qn =
n−1 ∑n

i=1 δxi
to P in the limit as N ≥ n → ∞. Indeed,

provided that the Markov chain is V -uniformly ergodic
with V (x) ≥ dP

dQ
(x)

√
kP (x, x) and that certain moments

of the chain are finite, [137], Theorem 3, showed that
KSDk({x1, . . . , xn}) → 0 almost surely as n → ∞.

Thus, Stein discrepancies may be used to post-process
MCMC output, which can have the benefits of improving
approximation quality, mitigating sampler bias and pro-
viding a compressed representation of P . The closed form
of KSD renders such post-processing straightforward. Ex-
tensions of Stein thinning, to allow for nonmyopic opti-
mization and for mini-batching, were recently studied in
[155]. In related work, [83, 109] proposed to use Stein dis-
crepancies to reweight Markov chain output, as opposed
to selecting a smaller subset.

4.3 Improving Monte Carlo Integration

As already mentioned, the problem of approximating
expectations EX∼P [f (X)], where f : X → R is a test
function of interest, is at the heart of Stein’s method,
see [151]. In Bayesian statistics, it is most common for
expectations to be approximated using ergodic averages
from MCMC, though of course the algorithms described
in Sections 4.2.1 and 4.2 can also be used. The conver-
gence of estimators based on MCMC is characterized by
the central limit theorem, whose asymptotic variance will
depend on the variance of f along the sample path of the
Markov chain (see Chapter 17 of [119]). In [152], auxil-
iary variables are constructed for such variance reduction
in a particular setting. A recent approach to reducing the
asymptotic variance is to use so-called control variates.
This consists of designing a function h : X →R such that,
if we rewrite the expectation as

EX∼P

[
f (X)

] = EX∼P

[
h(X)

] +EX∼P

[
f (X) − h(X)

]
,

then the first term on the right-hand side is known analyt-
ically (by some auxiliary argument) and the second inte-
grand, f − h, should have smaller variance than f along
the sample path of the Markov chain. In this way, estima-
tion of the original expectation is reduced to estimation
of an alternative expectation, which is more amenable to
MCMC. Indeed, in an ideal situation we would pick h

such that f − h is constant along the sample path of the
Markov chain, so that the ergodic average is exact after
just one iteration of the chain has been performed [122].

The principal limitation to the successful application of
control variates is the identification of a set of candidates
for h that (a) is sufficiently rich to approximate f and
(b) for which the expectations EX∼P [h(X)] can be eval-
uated. Several authors have developed bespoke solutions
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that are specific to a particular MCMC algorithm, includ-
ing [8, 44, 79, 120, 152]. It was pointed out in [127] that
the image of a Stein operator adapted to P can serve as
such a set in general. In concrete terms, one may identify
a Stein operator T and a Stein set G that are adapted to
P and then attempt to pick an element g ∈ G for which
f − h ≈ constant along the Markov chain sample path,
where h = T g. This problem is closely related to numer-
ical solution of the Stein equation (6).

In [11, 122, 128], the authors selected g from the set
of all polynomials of a fixed maximum degree, minimiz-
ing the squared error Jn(g) = ∑n

i=1(f (xi) − T g(xi))
2

along the Markov chain sample path {x1, . . . , xn}, with
no complexity penalty used. In [148], the authors used an
�1 or �2 penalty on the polynomial coefficients and rec-
ommended cross-validation as a means to select an ap-
propriate polynomial degree. Kernel methods with a min-
imum norm penalty were proposed in [21, 126, 127, 154].
In [147], the authors showed how polynomials and repro-
ducing kernels can be combined in a manner that leads
to polynomial exactness of the control variate estimator
in the Bernstein–von Mises limit. The use of neural net-
works for g was empirically assessed in [144, 171]. If one
specializes to particular MCMC algorithms then it may be
possible to consistently estimate the asymptotic variance
under the Markov chain, which can be used to construct
a more appropriate functional Jn. This approach is exem-
plified in [23–25]. [106] provides a detailed application of
Stein control variates to policy optimization in reinforce-
ment learning.

The diverse set of approaches for constructing control
variates based on Stein operators supports the view that
no single method will be universally optimal for all real-
world computational problems and, to some extent, the
estimation of a suitable control variate remains as much
an “art” as the design of an efficient MCMC method.

4.4 Statistical Estimators Based on Stein
Discrepancies

Computable Stein discrepancies have also been used
for parameter estimation. Let P� = {Pϑ : ϑ ∈ �} de-
note a parametric family of distributions, and assume we
would like to recover the element of this family, which
generated some data x1, . . . , xn (represented by Qn =
n−1 ∑n

i=1 δxi
). Barp et al. [21] proposed minimum Stein

discrepancy estimators, which are a general class of esti-
mators of the form

ϑ̂n := arg inf
ϑ∈�

S(Qn,T ϑ,G),(20)

where T ϑ is a Stein operator characterising Pϑ , and
showed that a number of machine learning algorithms in-
cluding score-matching [88], contrastive divergence [82]
and minimum probability flow [146] are specific instances
of this framework. have also been proposed. Barp et al.

[21] studied the special case of minimum diffusion KSD
estimators and showed that these enjoy desirable robust-
ness properties under regularity conditions on the kernel.
This was then studied further in the context of discrete
models by [12], while [73] considered a Stein discrep-
ancy where the Stein space is indexed by a neural net-
work. Relatedly, [30] studied minimum Lq distance es-
timators based on Stein operators, and [113] considered
a minimum distance estimator based on likelihood ratios
estimated through Stein operators.

Most notably, estimators of the form in (20) are useful
for unnormalized likelihood models, since Stein operators
usually rely on unnormalized densities. When the para-
metric family is in some exponential family, the Langevin
Stein discrepancies become quadratic forms in ϑ , which
implies that the optimizer can be obtained in closed-form.
Matsubara [117] built on this idea to propose a fully con-
jugate generalized Bayesian approach for unnormalized
densities. This was latter extended to discrete data settings
by [118].

5. NEW METHODS FOR AND INSIGHTS IN
STATISTICAL INFERENCE VIA STEIN OPERATORS

AND STEIN DISCREPANCIES

In this section, we focus on statistical inference and
show how tools from Stein’s method have been put to
use to build new powerful tools as well as to gain novel
insights in long-existing procedures. Section 5.1 is con-
cerned with new goodness-of-fit tests obtained from Stein
discrepancies, while Section 5.2 deals with composite
goodness-of-fit tests based on Stein operators. These
goodness-of-fit tests lend themselves very naturally to
a further Stein-based analysis, namely to quantify the
distance, at a given finite sample size n, between the
asymptotic distribution and the unknown exact distribu-
tion, hereby getting an idea of how good the asymp-
totic approximation actually is. More generally, recently
Stein’s method has been used to quantify the asymptotic
behaviour of statistical estimators and hypothesis tests,
which is the topic of Section 5.3. In a similar vein, Sec-
tion 5.4 deals with the Bayesian setting, hereby showing
a new way to quantify the finite-sample effect of the prior
choice.

5.1 Goodness-of-Fit Tests from Stein Discrepancies

Suppose we would like to test for the null hypothesis
H0 : Q = P based on realizations {x1, . . . , xn} from Q

(which may or may not be independent). Chwialkowski,
Strathmann and Gretton and Lin, Lee and Jordan [42,
110] proposed to use a KSD as test statistic, which is par-
ticularly powerful for a distribution P whose density is
known up to a normalizing constant.

These tests are motivated by the general approach of us-
ing IPMs within a hypothesis testing framework. In par-
ticular, an influential line of work in machine learning has
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been to use IPMs with a kernel-based underlying function
class, leading to the so-called MMD hypothesis tests [74,
75]. This approach has previously been used to test for a
range of hypotheses, including two-sample tests and inde-
pendence tests. Their popularity can be explained through
their generality: they only rely on the choice of a kernel
and samples from both P and Q, and can hence be imple-
mented for a wide range of problems.

In the goodness-of-fit setting, when P has a density
known up to normalizing, sampling from P may intro-
duce unnecessary variance to our test statistic. The test is
also somewhat suboptimal since it does not use any spe-
cific properties of P . It is therefore natural to consider the
use of Stein operators in this setting. This can be achieved
by selecting an IPM whose underlying function class is
of the form T g for g in some Stein set G. When using a
Langevin–Stein operator and kernel Stein set, this leads to
the Langevin KSD of Example 4, which is the case most
often considered in this literature. Recalling the expres-
sion for the population Langevin KSD given in equation
(10), an unbiased estimate of the squared KSD takes the
convenient form of a U-statistic:

K̂SD
2
k(Q) = 2

n(n − 1)

∑
i<j

kP (xi, xj ).

This estimate can be used as a test statistic. It is degener-
ate under the null hypothesis that Q = P , and nondegen-
erate under the alternative. As a result, when the sample
is i.i.d. the asymptotic behavior of the statistic is obtained
via standard results [140]. Unfortunately, the asymptotic
distribution under the null is a function of the eigenvalues
of kP with respect to Q, which are rarely computable in
closed form. Nonetheless, a test threshold of asymptotic
level α may be obtained using a wild-bootstrap procedure
on a V-statistic approximation to the KSD. The wild boot-
strap may also be adapted to the case where the sample
from Q is not i.i.d., but satisfies a τ -mixing condition
[97]. This is especially helpful when the goodness-of-fit
test is used for bias quantification of approximate MCMC
procedures since these are not i.i.d. [42], Section 4.

In order to guarantee consistency of the tests, it is of
interest to establish when the KSD uniquely determines
whether Q and P correspond. We refer to [42], Theo-
rem 2.2: if k is C0-universal ([32], Definition 4.1), and if
EX∼Q[‖∇(log(p(X)/q(X)))‖2

2] < ∞, then KSDk(q) =
0 if and only if P = Q. Many popular kernels, including
the exponentiated quadratic (Gaussian) kernel k(x, y) =
exp(−‖x − y‖2

2/l2) (l > 0), are C0-universal. We how-
ever recall the result of [70] that stronger conditions on
the kernel are required when one wishes to control weak
convergence to a target using the KSD.

Apart from U-statistic based tests, alternative tests ex-
ist, which can be computed in linear time, using adaptive

kernel Stein features that indicate where the data distribu-
tion Q differs from the model P [90], or importance sam-
pling approaches [87]. In the former case, the features are
learned on a held-out sample from Q, so as to maximize
the power of the resulting test.

Stein goodness-of-fit tests may also be defined for right-
censored time-to-event data. Indeed, [56] defined three
Stein operators for this setting, which exploit well-known
identities in survival analysis that arise from the under-
lying structure of the data. The first is the Survival Stein
Operator, which arises from a direct application of the
Langevin–Stein operator to the density function; the sec-
ond, the martingale Stein operator, applies a well-known
martingale equality in a similar fashion as for log-rank
statistics; and the third, the Proportional Stein Opera-
tor, applies the Langevin–Stein operator to the hazard
function. The resulting Stein tests were used to validate
models of survival times in real-world medical studies of
leukemia, chronic granulotamous disease, ovarian cancer
and lung cancer.

For discrete distributions, KSD tests include the work
of [164], which derives a discrepancy for discrete data
and that of [165] that focuses on point processes. For ex-
ponential random graph models when only one network
observation is available, [163] use the Stein operator for
exponential random graph models from [136] as basis for
a kernelized Stein discrepancy test.

5.2 Composite Goodness-of-Fit Tests from Stein
Operators

Consider the classical problem of testing the compos-
ite null hypothesis H0 : Q ∈ P� = {Pϑ : ϑ ∈ �}, where
� ⊂ R

s , s ∈ N, is an open parameter space, and Pϑ is the
unique distribution corresponding to ϑ ∈ � in the para-
metric family P�. This hypothesis is to be tested based
on an i.i.d. sample {x1, . . . , xn} from Q. For example,
tests for normality fall into this category.

For this problem, test statistics based on parametric
families of Stein operators as in [100] have been devel-
oped as follows. Let {Tϑ : ϑ ∈ �} be a family of Stein
operators characterizing the family P�. By the Stein
characterization, we have EX∼Pϑ [(Tϑg)(X)] = 0 for all
g ∈ G(Tϑ) and ϑ ∈ �. A natural extension of the KSD
framework to the composite hypothesis was proposed by
[91] and built on the minimum Stein discrepancy estima-
tors of [21]. However, we will focus this section on an
alternative test for the composite hypothesis based on a
suitable set of test functions G = {gt (x) : t ∈ M}, M ⊂ R

d

given by the weighted L2 statistic

Tn = n

∫
M

∥∥∥∥∥1

n

n∑
i=1

(Tϑ̂n
gt )(xi)

−EX∼Pϑ̂n

[
(Tϑ̂n

gt )(X)
]∥∥∥∥∥

2

ω(t)dt(21)
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= n

∫
M

∥∥∥∥∥1

n

n∑
i=1

(Tϑ̂n
gt )(xi)

∥∥∥∥∥
2

ω(t)dt,

where ϑ̂n is a consistent estimator of ϑ , ‖ · ‖ is a suitable
norm and ω : M → [0,∞) is a positive weight function
satisfying some weak integrability conditions. Heuristi-
cally, Tn should be close to 0 if and only if the data stems
from P�, and we hence reject H0 for large values of Tn.

Henze and Visagie [81] implicitly used such a test for
multivariate normality based on the classical Stein oper-
ator T from Example 1. An alternative test of univari-
ate normality based on T from Example 1 is proposed in
[50], but in this case test functions of the form {gt (x) =
exp(itx) : t ∈ R} (i.e., related to characteristic functions)
are used. Dörr, Ebner and Henze [48] also introduce a test
of multivariate normality, based on (T g)(x) = −�g(x)+
(‖x‖2

2 − d)g(x) (where � denotes the Laplacian), and the
class of test functions {gt (x) = exp(itᵀx) : t ∈ R

d}. There
are considerable differences in power against specific al-
ternatives between the tests, especially w.r.t. the choice of
test functions. For a comparative Monte Carlo simulation
study, see [51].

In a similar vein, [29] and [31] provide new characteri-
zations of continuous and discrete parametric families of
distributions through the density approach for novel tests
for univariate normality [28], the gamma family [27] and
the inverse Gaussian law [2]. Note that other test statis-
tics of type (21) based on Stein operators are implicitly
proposed in tests for parametric families, although orig-
inally motivated by characterizing (partial) differential
equations for integral transforms; see, for instance, [18]
for a test of exponentiality, [19] for a test of Poissonity
and [80] for a test of the gamma law.

The expression in (21) can be thought of as a weighted
L2-difference between the expectation of Tϑ̂n

gt under Pϑ̂n

and Qn = n−1 ∑n
i=1 δxi

. This is in contrast with the IPMs,
such as the KSD of the previous section, which measure
worst-case types of differences (recall equation (5) which
considers the supremum instead of an average). As a re-
sult, although the tests in Sections 5.1 and 5.2 are both
based on Stein operators, they use these in rather differ-
ent manners. The tests in Section 5.1 use an RKHS set-
ting, which allows for a rich set of alternative distribu-
tions. For the tests in Section 5.2, the benefit of consider-
ing the structure of a L2-Hilbert space lies in the fact that
the central limit theorem for Hilbert-space valued random
elements can be exploited to derive limit distributions un-
der H0, as well as fixed and contiguous alternatives.

5.3 Maximum Likelihood Estimation and Chi-Square
Tests

With Stein’s method it is possible to give explicit
bounds at finite sample size n to the asymptotic approx-
imation of estimators and test statistics. The arguably

most famous example is the asymptotic normal distribu-
tion for maximum likelihood estimators (MLEs) under
fairly general conditions. For example, in the simple case
of X1,X2, . . . ,Xn being i.i.d. random variables from a
single-parameter distribution, then for Z ∼ N(0,1), and
under classical regularity conditions,√

ni(θ0)
(
θ̂n(X) − θ0

) →d Z, as n → ∞,(22)

where →d denotes convergence in distribution. Starting
with the single-parameter case, under some natural regu-
larity assumptions, which we do not detail here, [6] obtain
general bounds w.r.t. the bounded Wasserstein distance as
follows. Let Wn := √

ni(θ0)(θ̂n(X) − θ0). Then the in-
terest is to find upper bounds on |E[h(Wn)] − E[h(Z)]|,
where h ∈ HbW as in Remark 1. The general idea is to
represent the standardized MLE in such a way that it con-
tains a quantity which is a sum of independent random
variables plus a term that can be controlled. The part in-
volving the sum is handled via a classical use of Stein’s
method. While the underlying random sample X1, . . . ,Xn

are assumed i.i.d. in [6], they are locally dependent in [3].
As an illustration, consider the exponential distribution

in its canonical form. The probability density function is
f (x|θ) = θexp{−θx} for x > 0 and the unique MLE for θ

is θ̂n(X) = 1/X, the inverse of the sample average. Then
[6] established that

dbW
(
L(Wn),L(Z)

) ≤ 4.41456√
n

+ 8(n + 2)(1 + √
n)

(n − 1)(n − 2)
,

with Z ∼ N(0,1) and Wn := √
ni(θ0)(θ̂n(X) − θ0); here,

i(θ0) is the expected Fisher information for one variable.
This bound is explicit and of the order n−1/2. Using the
delta method combined with Stein’s method, [5] give an
explicit bound for MLEs, which are a smooth function of
a sum of independent terms. This result is generalized to
the multivariate case in [4].

Since the MLE can be used as a basis for likelihood
ratio tests, which under regularity assumptions follow ap-
proximately a chi-square distribution, it is natural to mea-
sure the finite-sample approximation error of such tests.
An explicit general bound of order O(n−1/2) is obtained
in [7] using Stein’s method.

Explicit bounds on chi-square approximations for Pear-
son’s chi-square test for goodness-of-fit of categorical
data are obtained in [60], and more generally the power
divergence family of statistics in [59]. Gaunt and Reinert
[61] provided explicit bounds of the order r/n to quan-
tify the chi-square approximation with r − 1 degrees of
freedom to Friedman’s statistic.

5.4 The Effect of Prior Choice on the Posterior in
Bayesian Statistics

In Bayesian statistics, [46] proved that, under cer-
tain regularity conditions and for large sample sizes, the
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choice of a prior distribution gets irrelevant for posterior
inference. With the help of Stein’s method, [62, 99] com-
plemented this result by estimating prior sensitivity for
fixed (and often small) sample sizes by quantifying the
Wasserstein distance between posterior distributions aris-
ing from two distinct priors in the one-dimensional one-
parameter setting. The argument was extended to the mul-
tivariate setting in [121].

Let us start by fixing the notation. Suppose that the ob-
servations X1, . . . ,Xn are i.i.d. from a parametric model
with scalar parameter of interest, which we model as some
random variable �. Now, assume we have two distinct
(possibly improper) prior densities p1(θ) and p2(θ) for
the random quantity �. The resulting posterior densities
for � can be expressed as

pi(θ;x) = κi(x)pi(θ)�(θ;x), i = 1,2,(23)

where κ1 and κ2 are normalizing constants. Denote by
(�1,P1) and (�2,P2) pairs of random variables and cu-
mulative distribution functions, which correspond to the
densities p1(θ;x) and p2(θ;x), respectively. We assume
that the densities p1(θ;x) and p2(θ;x) are nested, so that
the support of one is included in the support of the other.
We suppose I2 ⊆ I1, which allows us to write p2(θ;x) =
κ2(x)
κ1(x)

ρ(θ)p1(θ;x), where ρ(θ) = p2(θ)/p1(θ) is the ratio
of prior densities. The key idea relies on the elementary
identity

d
dθ

(p2(θ;x)f (θ))

p2(θ;x)

=
d

dθ
(p1(θ;x)f (θ))

p1(θ;x)
+

(
d

dθ
log

(
ρ(θ)

))
f (θ),

which is an immediate consequence of (23) and the nest-
edness of the densities. This identity no longer involves
the normalizing constants and it relates the density oper-
ators of p1(·;x) and p2(·;x) in such a way that, with fh

a solution to the Stein equation h(x) − EX1∼P1h(X1) =
T1fh(x), we get (writing shorthand EPj

for E�j∼Pj
, j =

1,2)

EP2

[
h(�2)

] −EP1

[
h(�1)

]
= EP2

[
T1fh(�2)

]
= EP2

[
(T1 − T2)fh(�2)

]
= EP2

[
d

dθ
log

(
ρ(�2)

)
fh(�2)

]
(the second equality holds because, by definition,
EP2[T2fh(�2)] = 0). Thus, bounding an IPM generated
by some class H between �2 and �1 can be achieved by
bounding EP2[ d

dθ
log(ρ(θ))|θ=�2fh(�2)] over all h ∈ H.

For the sake of illustration, consider normal data with
fixed variance σ 2, and the mean the parameter of interest.
Ley, Reinert and Swan [99] compare a normal N(μ, δ2)

prior for the location parameter (the conjugate prior in this
situation) with a uniform prior. They bounded the Wasser-
stein distance between the resulting posteriors P1 and P2
by

σ 2

nδ2 + σ 2 |x − μ| ≤ dW(P1,P2)

≤ σ 2

nδ2 + σ 2 |x − μ|

+
√

2√
π

σ 3

nδ
√

nδ2 + σ 2

with x = n−1 ∑n
i=1 xi the sample average. Both bounds

are of the order of O(n−1) and are easily interpreted: the
better the initial guess of the prior, meaning here of the
location, the smaller the bounds, and hence the smaller
the influence of the prior.

6. CONCLUSION

The goal of this paper is to highlight some recent devel-
opments in computational statistics that have been accom-
plished via tools inherited from Stein’s method. More-
over, this paper illustrates that there is considerable scope
for more interplay between the research strand on how
to set up Stein operators and that of devising computable
Stein discrepancies and related algorithms. For example,
for a given target distribution, it is mostly an open prob-
lem which Stein operator and class to choose so as to ob-
tain a computable Stein discrepancy, which is most useful
for the problem at hand. This answer may differ depend-
ing on whether we want to construct a hypothesis test,
develop a sampling method, or measure sample quality;
a step in this direction is taken in [162]. Section 5 high-
lights how Stein’s method can be brought to fruition not
only to devise estimators but also to quantify their behav-
ior. There is plenty of scope for analyzing the procedures
and estimators from Sections 4.4 and 5.1 to obtain quan-
titative bounds on their performance.

The list of results given in this paper are but a mere sam-
ple of the ongoing activity in this newly established area
of research at the boundary between probability, func-
tional analysis, data science and computational statistics.
For instance, Stein’s method has been used for design-
ing sampling-based algorithms for nonconvex optimiza-
tion [52], or for learning semiparametric multiindex mod-
els in high dimensions [166]. In Bayesian statistics, Stein
discrepancies have been used as variational objectives for
posterior approximation (e.g., [57, 86, 132]).

A complete exhaustive description of all recent devel-
opments in this area is an impossible task within the con-
strained space of a review paper such as this one. Yet, we
hope that the range of problems which are addressed in
this paper show the versatility of Stein’s method, and the
promise that it holds for further exciting developments.
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