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SUPPLEMENT

This supplement provides complete proofs for theoretical results, extended nu-
merics and full details to reproduce the experiments presented in the paper.

APPENDIX A: PROOF OF THEORETICAL RESULTS

Proof of Fact 1. For a prior N (m, c) and data {(xi, fi)}ni=1, standard con-
jugacy results for GPs lead to the posterior gn being a GP N (mn, cn), with
mean mn(x) = m(x)+c(x, X)C−1(f −m) and covariance cn(x,x′) = c(x,x′)−
c(x, X)C−1c(X,x′), see Chap. 2 of Rasmussen and Williams (2006). Then re-
peated application of Fubini’s theorem produces

E[Π[gn]] =

∫
Ω

∫
X
gn(x, ω)π(dx)P(dω) =

∫
X
mn(x)π(dx)

V[Π[gn]] =

∫
Ω

[∫
X
gn(x, ω)π(dx)−

∫
X
mn(x)π(dx)

]2

P(dω)

=

∫
X

∫
X

∫
Ω

[g(x, ω)−mn(x)][g(x′, ω)−mn(x′)]P(dω)π(dx)π(dx′)

=

∫
X

∫
X
cn(x,x′)π(dx)π(dx′).

The proof is completed by substituting the expressions for mn and cn into these
two equations. (The result in the main text additionally sets m ≡ 0.)

Proof of Fact 1. From Eqn. 5 in the main text ‖Π̂ − Π‖H∗ ≤ ‖µ(π̂) −
µ(π)‖H. For the converse inequality, consider the specific integrand f = µ(π̂) −
µ(π). Then, from the supremum definition of the dual norm, ‖Π̂−Π‖H∗ ≥ |Π̂[f ]−
Π[f ]|/‖f‖H. Now we use the reproducing property:

|Π̂[f ]−Π[f ]|
‖f‖H

=
|〈f, µ(π̂)− µ(π)〉H|

‖f‖H

=
‖µ(π̂)− µ(π)‖2H
‖µ(π̂)− µ(π)‖H

= ‖µ(π̂)− µ(π)‖H.

This completes the proof.

Proof of Fact 2. Combining Fact 1 with direct calculation gives that

‖Π̂−Π‖2H∗ = ‖µ(π̂)− µ(π)‖2H

=
n∑

i,j=1

wiwjk(xi,xj)− 2
n∑
i=1

wi

∫
k(x,xi) dπ(x) +

∫∫
k(x,x′) dπ(x)dπ(x′)

= w>Kw − 2w>Π[k(X, ·)] + ΠΠ[k(·, ·)]

as required.

The following lemma shows that probabilistic integrators provide a point esti-
mate that is at least as good as their non-probabilistic counterparts:

imsart-sts ver. 2014/10/16 file: supplement.tex date: January 2, 2019



2

Lemma 1 (Bayesian re-weighting). Let f ∈ H. Consider the cubature rule
Π̂[f ] =

∑n
i=1wif(xi) and the corresponding BC rule Π̂BC[f ] =

∑n
i=1w

BC
i f(xi).

Then ‖Π̂BC −Π‖H∗ ≤ ‖Π̂−Π‖H∗.

Proof. This is immediate from Fact 2, which shows that the BC weights wBC
i

are an optimal choice for the space H.

The convergence of Π̂BC is controlled by quality of the approximation mn:

Lemma 2 (Regression bound). Let f ∈ H and fix states {xi}ni=1 ∈ X . Then
we have |Π[f ]− Π̂BC[f ]| ≤ ‖f −mn‖2.

Proof. This is an application of Jensen’s inequality: |Π[f ]−Π̂BC[f ]|2 = (
∫
f−

mndπ)2 ≤
∫

(f −mn)2 dπ = ‖f −mn‖22, as required.

Note that this regression bound is not sharp in general (Ritter, 2000, Prop. II.4)
and, as a consequence, Thm. 1 below is not quite optimal.

Lemmas 1 and 2 refer to the point estimators provided by BC. However, we aim
to quantify the change in probability mass as the number of samples increases:

Lemma 3 (BC contraction). Assume f ∈ H. Suppose that ‖Π̂BC−Π‖H∗ ≤ γn
where γn → 0 as n→∞. Define Iδ = [Π[f ]−δ,Π[f ]+δ] to be an interval of radius
δ > 0 centred on the true value of the integral. Then P{Π[gn] /∈ Iδ} vanishes at
the rate O(exp(−(δ2/2)γ−2

n )).

Proof. Assume without loss of generality that δ < ∞. The posterior distri-
bution oΠ[gn] is Gaussian with mean mn and variance vn. Since vn = ‖Π̂BC −
Π‖2H∗ we have vn ≤ γ2

n. Now the posterior probability mass on Icδ is given by∫
Icδ
φ(r|mn, vn)dr, where φ(r|mn, vn) is the p.d.f. of the N (mn, vn) distribution.

From the definition of δ we get the upper bound

P{Π[gn] /∈ Iδ} ≤
∫ Π[f ]−δ

−∞
φ(r|mn, vn)dr +

∫ ∞
Π[f ]+δ

φ(r|mn, vn)dr

= 1 + Φ
( Π[f ]−mn√

vn︸ ︷︷ ︸
(∗)

− δ
√
vn

)
− Φ

( Π[f ]−mn√
vn︸ ︷︷ ︸

(∗)

+
δ
√
vn

)
.

From the definition of the WCE we have that the terms (∗) are bounded by
‖f‖H <∞, so that asymptotically as γn → 0 we have

P{Π[gn] /∈ Iδ} . 1 + Φ
(
− δ/
√
vn
)
− Φ

(
δ/
√
vn
)

. 1 + Φ
(
− δ/γn

)
− Φ

(
δ/γn

)
. erfc

(
δ/
√

2γn
)
.

The result follows from the fact that erfc(x) . exp(−x2/2) for x sufficiently
small.

This result demonstrates that the posterior distribution is well-behaved; prob-
ability mass concentrates in a neighbourhood Iδ of Π[f ]. Hence, if our prior is
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well calibrated (see Sec. 4.1), the posterior provides uncertainty quantification
over the solution of the integral as a result of performing a finite number n of
integrand evaluations.

Define the fill distance of the set X = {xi}ni=1 as

hX = sup
x∈X

min
i=1,...,n

‖x− xi‖2.

As n → ∞ the scaling of the fill distance is described by the following special
case of Lemma 2, Oates et al. (2016a):

Lemma 4. Let v : [0,∞) → [0,∞) be continuous, monotone increasing, and
satisfy v(0) = 0 and limx↓0 v(x) exp(x−3d) =∞. Suppose further X = [0, 1]d, π is
bounded away from zero on X , and X = {xi}ni=1 are samples from an uniformly
ergodic Markov chain targeting π. Then we have EX [v(hX)] = O

(
v(n−1/d+ε)

)
where ε > 0 can be arbitrarily small.

Proof of Thm. 1. Initially consider fixed states X = {xi}ni=1 (i.e. fixing the
random seed) and H = Hα. From a standard result in functional approxima-
tion due to Wu and Schaback (1993), see also Wendland (2005, Thm. 11.13),
there exists C > 0 and h0 > 0 such that, for all x ∈ X and hX < h0,
|f(x) − mn(x)| ≤ ChαX‖f‖H. (For other kernels, alternative bounds are well-
known; Wendland, 2005, Table 11.1). We augment X with a finite number of
states Y = {yi}mi=1 to ensure that hX∪Y < h0 always holds. Then from the
regression bound (Lemma 2),

∣∣Π̂B(MC)MC[f ]−Π[f ]
∣∣ ≤ ‖f −mn‖2 =

(∫
(f(x)−mn(x))2 dπ(x)

)1/2

≤
(∫

(ChαX∪Y ‖f‖H)2 dπ(x)

)1/2

= ChαX∪Y ‖f‖H.

It follows that ‖Π̂B(MC)MC−Π‖H∗α ≤ Ch
α
X∪Y . Now, taking an expectation EX over

the sample path X = {xi}ni=1 of the Markov chain (or over the i.i.d. realisation),
we have that

EX‖Π̂B(MC)MC −Π‖H∗α ≤ CEXhαX∪Y ≤ CEXhαX .(1)

From Lemma 4 above, we have a scaling relationship such that, for hX∪Y < h0, we
have EXhαX = O(n−α/d+ε) for ε > 0 arbitrarily small. From Markov’s inequality,
convergence in mean implies convergence in probability and thus, using Eqn. 1, we
have ‖Π̂B(MC)MC −Π‖H∗α = OP (n−α/d+ε). This completes the proof for H = Hα.
More generally, if H is norm-equivalent to Hα then the result follows from the
fact that ‖Π̂B(MC)MC −Π‖H∗ ≤ λ‖Π̂B(MC)MC −Π‖H∗α for some λ > 0.

Note that the fill distance was central to the proof of Thm. 1. In fact, the above
argument implies that any set of n random points for which the fill distance is
asymptotically minimised provides the same rate of contraction for the posterior.
Indeed, a deterministic point set with low fill distance could equally be used and
our proof demonstrates that the resulting BC point estimator would obtain the
optimal O(n−α/d) rate for the worst case error, up to logarithmic terms, among
all deterministic estimators on Hα.
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Proof of Thm. 2. From Theorem 15.21 of Dick and Pillichshammer (2010),
which assumes α ≥ 2, α ∈ N, the QMC rule Π̂QMC based on a higher-order digital

(t, α, 1, αm × m, d) net over Zb for some prime b satisfies ‖Π̂BQMC − Π‖H∗ ≤
Cd,α(log n)dαn−α = O(n−α+ε) for Sα the Sobolev space of dominating mixed
smoothness order α, where Cd,α > 0 is a constant that depends only on d and
α (but not on n). The result follows immediately from norm equivalence and
Lemma 1. The contraction rate follows from Lemma 3.

Proof of Prop. 2. Denote by Pn,λ the posterior distribution on the integral
conditional on a value of λ. Following Prop. 1, this is a Gaussian distribution
with mean and variance given by:

Eλ[Π[gn]] = Π[c0(·, X)]C−1
0 f

Vλ[Π[gn]] = λ{ΠΠ[c0(·, ·)]−Π[c0(·, X)]C−1
0 Π[c0(X, ·)]}

Furthermore, the posterior on the amplitude parameter satisfies

p(λ|f) ∝ p(f |λ)p(λ)

=
1

(2π)n/2λ
n
2

+1|C0|
1
2

exp

(
− 1

2λ
f>C−1

0 f

)
which corresponds to an inverse-gamma distribution with parameters α = n

2
and β = 1

2f
>C−1

0 f . We therefore have that (Π[gn], λ) is distributed as normal-
inverse-gamma and the marginal distribution for Π[gn] is a Student-t distribution,
as claimed.

APPENDIX B: KERNEL MEANS

In this section we propose approximate Bayesian cubature, aΠ̂BC, where the
weights awBC = K−1

aΠ[k(X, ·)] are an approximation to the optimal BC weights
based on an approximation aΠ[k(X, ·)] of the kernel mean (see also Prop. 1 in
Sommariva and Vianello, 2006). The following lemma demonstrates that we can
bound the contribution of this error and inflate our posterior to reflect the addi-
tional uncertainty due to the approximation, so that uncertainty quantification
is still provided.

Lemma 5 (Approximate kernel mean). Consider an approximation aπ to π of
the form aπ =

∑m
j=1 awjδaxj . Then BC can be performed analytically with respect

to aπ; denote this estimator by aΠ̂BC. Moreover, ‖aΠ̂BC−Π‖2H∗ ≤ ‖Π̂BC−Π‖2H∗+√
n‖aΠ−Π‖2H∗.

Proof. Define z = Π[k(X, ·)] and az = aΠ[k(X, ·)]. Let ε = az − z, write

aΠ̂BC =
∑n

i=1 aw
BC
i δxi and consider

‖aΠ̂BC −Π‖2H∗ = ‖µ(aπ̂BC)− µ(π)‖2H

=

〈
n∑
i=1

aw
BC
i k(·,xi)−

∫
k(·,x)dπ(x),

n∑
i=1

aw
BC
i k(·,xi)−

∫
k(·,x)dπ(x)

〉
H

= aw
>
BCKawBC − 2aw

>
BCz + Π[µ(π)]

= (K−1
az)>K(K−1

az)− 2(K−1
az)>z + Π[µ(π)]

= (z + ε)>K−1(z + ε)− 2(z + ε)>K−1z + Π[µ(π)]

= ‖Π̂BC −Π‖2H∗ + ε>K−1ε.
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Use ⊗ to denote the tensor product of RKHS. Now, since εi = azi − zi =
µ(aπ̂)(xi)− µ(π)(xi) = 〈µ(aπ̂)− µ(π), k(·,xi)〉H, we have:

ε>K−1ε =
∑
i,i′

[K−1]i,i′
〈
µ(aπ̂)− µ(π), k(·,xi)

〉
H
〈
µ(aπ̂)− µ(π), k(·,xi′)

〉
H

=
〈(
µ(aπ̂)− µ(π)

)
⊗
(
µ(aπ̂)− µ(π)

)
,
∑
i,i′

[K−1]i,i′k(·,xi)⊗ k(·,xi′)
〉
H⊗H

≤ ‖µ(aπ̂)− µ(π)‖2H
∥∥∥∑
i,i′

[K−1]i,i′k(·,xi)⊗ k(·,xi′)
∥∥∥
H⊗H

.

From Fact 1 we have ‖µ(aπ̂)− µ(π)‖H = ‖aΠ̂− Π‖H so it remains to show that
the second term is equal to

√
n. Indeed,∥∥∥∑

i,i′

[K−1]i,i′k(·,xi)⊗ k(·,xi′)
∥∥∥2

H

=
∑
i,i′,l,l′

[K−1]i,i′ [K
−1]l,l′

〈
k(·,xi)⊗ k(·,xi′), k(·,xl)⊗ k(·,xl′)

〉
H

=
∑
i,i′,l,l′

[K−1]i,i′ [K
−1]l,l′ [K]il[K]i′,l′ = tr[KK−1KK−1] = n.

This completes the proof.

Under this method, the posterior variance V[Π[agn]] := ‖aΠ̂BC −Π‖2H∗ cannot
be computed in closed-form, but computable upper-bounds can be obtained and
these can then be used to propagate numerical uncertainty through the remainder
of our statistical task. The idea here is to make use of the triangle inequality:

‖aΠ̂BC −Π‖H∗ ≤ ‖aΠ̂BC − aΠ‖H∗ + ‖aΠ−Π‖H∗ .(2)

The first term on the RHS is now available analytically; from Fact 1 its square
is aΠaΠ[k(·, ·)]− aΠ[k(·, X)]K−1

aΠ[k(X, ·)]. For the second term, explicit upper
bounds exist in the case where states axi are independent random samples from
π. For instance, from (Song, 2008, Thm. 27) we have, for a radial kernel k, uniform

awj = m−1 and independent axi ∼ π,

‖aΠ−Π‖H∗ ≤
2√
m

sup
x∈X

√
k(x,x) +

√
log(2/δ)

2m
(3)

with probability at least 1−δ. (For dependent axj , them in Eqn. 3 can be replaced
with an estimate for the effective sample size.) Write Cn,γ,δ for a 100(1 − γ)%
credible interval for Π[f ] defined by the conservative upper bound described in
Eqns. 2 and 3. Then we conclude that Cn,γ,δ is 100(1−γ)% credible interval with
probability at least 1− δ.

Note that, even though the credible region has been inflated, it still contracts
to the truth, since the first term on the RHS in Lemma 5 can be bounded by
the sum of ‖aΠ̂BC −Π‖H∗ and ‖aΠ−Π‖H∗ , both of which vanish as n,m→∞.
The resulting (conservative) posterior agn can be viewed as a updating of beliefs
based on an approximation to the likelihood function; the statistical foundations
of such an approach are made clear in the recent work of Bissiri et al. (2016).
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Figure 1. Evaluation of uncertainty quantification provided by EB for both σ and λ. Results
are shown for d = 1 (top) and d = 5 (bottom). Coverage frequencies Cn,γ (computed from 100
(top) or 50 (bottom) realisations) were compared against notional 100(1−γ)% Bayesian credible
regions for varying level γ. Left: “Easy” test function f1. Right: “Hard” test function f2.

APPENDIX C: ADDITIONAL NUMERICS

This section presents additional numerical results concerning the calibration
of uncertainty for multiple parameters and in higher dimensions.

Calibration in d = 1: In Fig. 1 (top row) we study the quantification of uncer-
tainty provided by EB in the same setup as in the main text, but optimising over
both length-scale parameter σ1 and magnitude parameter λ. For both “easy” and
“hard” test functions, we notice that EB led to over-confident inferences in the
“low n” regime, but attains approximately correct frequentist coverage for larger
n. Note also that the hyperparameters do not seem to converge to a fixed value
as n increases (see Fig. 2).

Calibration in d = 5: The experiments of Sec. 5.1, based on BMC, were re-
peated in dimension d = 5. Results are shown in Fig. 1 (bottom row). Clearly
more integrand evaluations are required for EB to attain a good frequentist cov-
erage of the credible intervals, due to the curse of dimension. However, the fre-
quentist coverage was reasonable for large n in this task.

imsart-sts ver. 2014/10/16 file: supplement.tex date: January 2, 2019



7

Figure 2. Length scale parameter σ (top) and amplitude parameter λ (bottom) parameters were
estimated by the empirical Bayes method as the number n of samples was varied. The “easy”
(left) and “hard” (right) test functions considered in the main text were used, here in dimension
d = 1.

Calibration for varying prior smoothness: The experiments of Sec. 5.1, based
on BMC, were repeated in dimension d = 1 for a Matérn kernel with smoothness
α = 1

2 ,
3
2 ,

5
2 . Results are shown in Fig. 3. There was a clear interaction between the

smoothness α of the prior and the number n of samples needed for the length scale
σ to be properly estimated and, hence, for the posterior to be well-calibrated.

Empirical convergence assessment: The convergence of BQMC was studied
based on higher-order digital nets. The theoretical rates provided in Sec. 3.2.2
for this method are O(n−α+ε) for any α > 1/2. Fig. 4 gives the results ob-
tained for d = 1 (left) and d = 5 (right). In the one dimensional case, the
O(n−α+ε) theoretical convergence rate is attained by the method in all cases
p = α + 1/2 ∈ {3/2, 5/2, 7/2} considered. However, in the d = 5 case, the
rates are not observed for the number n of evaluations considered. This helps
us demonstrate the important point that (in addition to numerical conditioning)
the rates we provide are asymptotic, and may require large values of n before
being observed.

APPENDIX D: SUPPLEMENTAL INFORMATION FOR CASE STUDIES

D.1 Case Study #1

MCMC: In this paper we used the manifold Metropolis-adjusted Langevin al-
gorithm (Girolami and Calderhead, 2011) in combination with population MCMC.
Population MCMC shares information across temperatures during sampling, yet
previous work has not leveraged evaluation of the log-likelihood f from one sub-
chain ti to inform estimates derived from other sub-chains ti′ , i

′ 6= i. In contrast,
this occurs naturally in the probabilistic integration framework, as described in
the main text.

Here MCMC was used to generate a small number, n = 200, of samples on a
per-model basis, in order to simulate a scenario where numerical error in compu-
tation of marginal likelihood will be non-negligible. A temperature ladder with
m = 10 rungs was employed, for the same reason, according to the recommenda-
tion of Calderhead and Girolami (2009). No convergence issues were experienced;
the same MCMC set-up has previously been successfully used in Oates et al.
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Figure 3. Evaluation of uncertainty quantification being provided. Here λ was marginalised
whilst σ was estimated via EB. Results are shown for α = 1

2
(top), α = 3

2
(middle) and α =

5
2

(bottom). Coverage frequencies Cn,γ were compared against notional 100(1 − γ)% Bayesian
credible regions for varying level γ. Left: “Easy” test function f1. Right: “Hard” test function
f2.

(2016b).
Prior elicitation: Here we motivate a prior for the unknown function g based

on the work of Calderhead and Girolami (2009), who advocated the use of a
power-law schedule ti = ( i−1

m−1)5, i = 1, . . . ,m, based on an extensive empirical
comparison of possible schedules. A “good” temperature schedule approximately
satisfies the criterion |g(ti)(ti+1 − ti)| ≈ m−1, on the basis that this allocates

imsart-sts ver. 2014/10/16 file: supplement.tex date: January 2, 2019



9

1e+01

1e+00

1e−01

1e−02

1e−03

1e−04

1e−05

1e−06

2 8 32 128 512 2048

n
P

os
te

rio
r 

S
ta

nd
ar

d 
D

ev
ia

tio
n 1e+00

1e−01

1e−02

1e−03

1e−04

1e−05

2 8 32 128 512 2048

n

P
os

te
rio

r 
S

ta
nd

ar
d 

D
ev

ia
tio

n

Figure 4. Empirical investigation of BQMC in d = 1 (left) and d = 5 (right) dimensions and a
Sobolev space of mixed dominating smoothness Sα. The results are obtained using tensor product
Matérn kernels of smoothness α = 3/2 (red), α = 5/2 (green) and α = 7/2 (blue). Dotted lines
represent the theoretical convergence rates established for each kernel. The black line represents
standard QMC. Kernel parameters were fixed to (σi, λ) = (0.005, 1) (left) and (σi, λ) = (1, 0.5)
(right).

equal area to the portions of the curve g that lie between ti and ti+1, control-
ling bias for the trapezium rule. Substituting ti = ( i−1

m−1)5 into this optimality

criterion produces |g(ti)|((i + 1)5 − i5) ≈ m4. Now, letting i = θm, we obtain
|g(θ5)|(5θ4m4 + o(m4)) ≈ m4. Formally treating θ as continuous and taking the
m → ∞ limit produces |g(θ5)| ≈ 0.2θ−4 and so |g(t)| ≈ 0.2t−4/5. From this we
conclude that the transformed function h(t) = 5t4/5g(t) is approximately sta-
tionary and can reasonably be assigned a stationary GP prior. However, in an
importance sampling transformation we require that π(t) has support over [0, 1].
For this reason we took π(t) = 1.306/(0.01 + 5t4/5) in our experiment.

Variance computation: The covariance matrix Σ cannot be obtained in closed-
form due to intractability of the kernel mean Πti [kf (·,θ)]. We therefore explored
an approximation aΣ such that plugging in aΣ in place of Σ provides an approx-
imation to the posterior variance V[log p(y)] for the log-marginal likelihood. This
took the form

aΣi,j := aΠtiaΠtj [kf (·, ·)]− aΠti [kf (·, X)]K−1
f aΠtj [kf (X, ·)]

where an empirical distribution aπ = 1
100

∑100
i=1 δxi was employed based on the

first m = 100 samples, while the remaining samples X = {xi}200
i=101 were reserved

for the kernel computation. This heuristic approach becomes exact as m → ∞,
in the sense that aΣi,j → Σi,j , but under-estimates covariance at finite m.

Kernel choice: In experiments below, both kf and kh were taken to be Gaus-
sian covariance functions; for example: kf (x,x′) = λf exp

(
− ‖x − x′‖22/2σ2

f

)
parametrised by λf and σf . This choice was made to capture smoothness of both
integrands f and h involved. For this application we found that, while the σ pa-
rameters were possible to learn from data using EB, the λ parameters required
a large number of data to pin down. Therefore, for these experiments we fixed
λf = 0.1 × mean(fi,j) and λh = 0.01 × mean(hi). In both cases the remaining
kernel parameters σ were selected using EB.

Data generation: As a test-bed that captures the salient properties of model
selection discussed in the main text, we considered variable selection for logistic
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regression:

p(y|β) =

N∏
i=1

pi(β)yi [1− pi(β)]1−yi

logit(pi(β)) = γ1β1xi,1 + . . . γdβdxi,d, γ1, . . . , γd ∈ {0, 1}

where the model Mk specifies the active variables via the binary vector γ =
(γ1, . . . , γd). A model prior p(γ) ∝ d−‖γ‖1 was employed. Given a model Mk,
the active parameters βj were endowed with independent priors βj ∼ N (0, τ−1),
where here τ = 0.01.

A single dataset of size N = 200 were generated from model M1 with pa-
rameter β = (1, 0, . . . , 0); as such the problem is under-determined (there are in
principle 210 = 1024 different models) and the true model is not well-identified.
The selected model is thus sensitive to numerical error in the computation of
marginal likelihood. In practice we limited the model space to consider only
models with

∑
γi ≤ 2; this speeds up the computation and, in this particular

case, only rules out models that have much lower posterior probability than the
actual MAP model. There were thus 56 models being compared.

D.2 Case Study #2

Background on the model: The Teal South model is a PDE computer model
for an oil reservoir. The model studied is on an 11×11 grid with 5 layers. It has 9
parameters representing physical quantities of interest. These include horizontal
permeabilities for each of the 5 layers, the vertical to horizontal permeability
ratio, aquifer strength, rock compressibility and porosity. For our experiments,
we used an emulator of the likelihood model documented in Lan et al. (2016)
in order to speed up MCMC; however this might be undesirable in general due
to the additional uncertainty associated with the approximation in the results
obtained.

Kernel choice: The numerical results in Sec. 5.3 were obtained using a Matérn
α = 3/2 kernel given by k(r) = λ2

(
1+
√

3r/σ
)

exp
(
−
√

3r/σ
)

where r = ‖x−y‖2,
which corresponds to the Sobolev space H3/2. We note that f ∈ H3/2 is satisfied.
We used EB over the length-scale parameter σ, but fixed the amplitude parameter
to λ = 1.

Variance computation: Due to intractability of the posterior distribution, the
kernel mean µ(π) is unavailable in closed form. To overcome this, the methodol-
ogy in Supplement B was employed to obtain an empirical estimate of the kernel
mean (half of the MCMC samples were used with BC weights to approximate the
integral and the other half with MC weights to approximate the kernel mean).
Eqn. 2 was used to upper bound the intractable BC posterior variance. For the up-
per bound to hold, states axj must be independent samples from π, whereas here
they were obtained using MCMC and were therefore not independent. In order
to ensure that MCMC samples were “as independent as possible” we employed
sophisticated MCMC methodology developed by Lan et al. (2016). Nevertheless,
we emphasise that there is a gap between theory and practice here that we hope
to fill in future research. For the results in this paper we fixed δ = 0.05 in Eqn.
3, so that Cn,γ = Cn,γ,0.05 is essentially a 95(1 − γ)% credible interval. A for-
mal investigation into the theoretical properties of the uncertainty quantification
studied by these methods is not provided in this paper.
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D.3 Case Study #3

Kernel choice: The (canonical) weighted Sobolev space Sα,γ is defined by tak-
ing each of the component spaces Hu to be Sobolev spaces of dominating mixed
smoothness Sα. i.e. the space Hu is norm-equivalent to a tensor product of |u|
one-dimensional Sobolev spaces, each with smoothness parameter α. Constructed
in this way, Sα,γ is an RKHS with kernel

kα,γ(x,x′) =
∑
u⊆I

γu
∏
i∈u

(
α∑
k=1

Bk(xi)Bk(x
′
i)

(k!)2
− (−1)α

B2α(|xi − x′i|)
(2α)!

)
,

where the Bk are Bernoulli polynomials.
Theoretical results: In finite dimensions d <∞, we can construct a higher-order

digital net that attains optimal QMC rates for weighted Sobolev spaces:

Theorem 1. Let H be an RKHS that is norm-equivalent to Sα,γ . Then
BQMC based on a digital (t, α, 1, αm × m, d)-net over Zb attains the optimal
rate ‖Π̂BQMC −Π‖H∗ = O(n−α+ε) for any ε > 0, where n = bm.

Proof. This follows by combining Thm. 15.21 of Dick and Pillichshammer
(2010) with Lemma 1.

The QMC rules in Theorem 1 do not explicitly take into account the values
of the weights γ. An algorithm that tailors QMC states to specific weights γ is
known as the component by component (CBC) algorithm; further details can be
found in (Kuo, 2003). In principle the CBC algorithm can lead to improved rate
constants in high dimensions, because effort is not wasted in directions where
f varies little, but the computational overheads are also greater. We did not
consider CBC algorithms for BQMC in this paper.

Note that the weighted Hilbert space framework allows us to bound the WCE
independently of dimension providing that

∑
u∈I γu <∞ (Sloan and Woźniakowski,

1998). This justifies the use of “high-dimensional” in this context. Further details
are provided in Sec. 4.1 of Dick et al. (2013).

D.4 Case Study #4

Kernel choice: The function spaces that we consider are Sobolev spacesHα(Sd)
for α > d/2, obtained using the reproducing kernel k(x,x′) =

∑∞
l=0 λlP

(d)
l (x>x′),

x,x′ ∈ Sd, where λl � (1+l)−2α and P
(d)
l are normalised Gegenbauer polynomials

(Brauchart et al., 2014). A particularly simple expression for the kernel in d = 2
and Sobolev space α = 3/2 can be obtained by taking λ0 = 4/3 along with
λl = −λ0 × (−1/2)l/(3/2)l where (a)l = a(a + 1) . . . (x + l − 1) = Γ(a + l)/Γ(a)
is the Pochhammer symbol. Specifically, these choices produce k(x,x′) = 8/3 −
‖x − x′‖2, x,x′ ∈ S2. This kernel is associated with a tractable kernel mean
µ(π)(x) =

∫
S2 k(x,x′)dπ(x′) = 4/3 and hence the initial error is also available

Π[µ(π)] =
∫
S2 µ(π)(x)dπ(x′) = 4/3.

Theoretical results: The states {xi}ni=1 could be generated with MC. In that
case, analogous results to those obtained in Sec. 3.2.1 can be obtained. Specifi-
cally, from Thm. 7 of Brauchart et al. (2014) and Bayesian re-weighting (Lemma
1), classical MC leads to slow convergence ‖Π̂MC − Π‖H∗ = OP (n−1/2). The
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Figure 5. Application to global illumination integrals in computer graphics. Left: A spherical
t-design over S2. Right The WCE, or worst-case-error, for Monte Carlo (MC), Bayesian MC
(BMC), Quasi MC (QMC) and Bayesian QMC (BQMC).

regression bound argument (Lemma 2) together with a functional approxima-
tion result in Le Gia et al. (2012, Thm. 3.2), gives a faster rate for BMC of
‖Π̂BMC −Π‖H∗ = OP (n−3/4) in dimension d = 2.

Rather than focus on MC methods, we present results based on spherical
QMC point sets. We briefly introduce the concept of a spherical t-design (Bon-
darenko et al., 2013) which is define as a set {xi}ni=1 ⊂ Sd satisfying

∫
Sd fdπ =

1
n

∑n
i=1 f(xi) for all polynomials f : Sd → R of degree at most t. (i.e. f is the

restriction to Sd of a polynomial in the usual Euclidean sense Rd+1 → R).

Theorem 2. For all d ≥ 2 there exists Cd such that for all n ≥ Cdt
d there

exists a spherical t-design on Sd with n states. Moreover, for α = 3/2 and d = 2,
the use of a spherical t-designs leads to a rate ‖Π̂BQMC −Π‖H∗ = O(n−3/4).

Proof. This property of spherical t-designs follows from combining Hesse and
Sloan (2005); Bondarenko et al. (2013) and Lemma 1.

The rate in Thm. 2 is best-possible for a deterministic method in H3/2(S2)
(Brauchart et al., 2014). Although explicit spherical t-designs are not currently
known in closed-form, approximately optimal point sets have been computed1

numerically to high accuracy. Additional theoretical results on point estimates
can be found in Fuselier et al. (2014). In particular they consider the conditioning
of the associated linear systems that must be solved to obtain BC weights.

Numerical results: In Fig. 5, the value of the WCE is plotted2 for each of the
four methods considered (MC, QMC, BMC, BQMC) as the number of states
increases. Both BMC and BQMC appear to attain the same rate for H3/2(S2),
although BQMC provides a constant factor improvement over BMC. Note that
O(n−3/4) was shown by Brauchart et al. (2014) to be best-possible for a deter-
ministic method in the space H3/2(S2).
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