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Intractable Integrals and Expensive Simulations

Setting: Intractable Integrals

Let f : X → R (X ⊆ Rd). Want to estimate the intractable integral:

Π[f ] :=

∫
X
f (x)Π(dx).

Statisticians’ Favourite Solution: use Monte Carlo:

Π̂MC[f ] :=
1

n

n∑
i=1

f (xi ), {xi}ni=1 ∼ Π.

Evaluating integrands/sampling can be very very expensive!!
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Intractable Integrals and Expensive Simulations

Example 1: CFDs for Wind Farm Modelling

Expected energy production of a
wind farm given wind conditions.

≈ 100 CPU hours per wind farm
simulation!!

Cannot obtain many samples even
with large computational budget.

Kirby, A., Briol, F.-X., Dunstan, T. D., &
Nishino, T. (2023). Data-driven modelling of
turbine wake interactions and flow resistance

in large wind farms. Wind Energy, 1–17.

See Andrew’s talk!
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Intractable Integrals and Expensive Simulations

Example 2: Uncertainty Quantification for Tsunami Models

PDE-based tsunami model
(non-linear shallow water

equations). Need to incorporate
uncertainty over parameters.

≈ 3 minutes GPU time per
integrand evaluations for a

simplistic model!

Li, K., Giles, D., Karvonen, T., Guillas, S., & Briol, F.-X. (2023). Multilevel Bayesian
quadrature. International Conference on Artificial Intelligence and Statistics (invited for
oral presentation), 1845–1868.
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Intractable Integrals and Expensive Simulations

Challenges for Integration in an Expensive World

We have several key challenges for expensive problems:

We will necessarily have a small number of observations n.

We will necessarily have significant numerical error remaining after
running our integration algorithm.

We need methods which can make use of the structure of the
integrand to reduce computational needs!
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Multilevel and Multifidelity Methods

The Telescoping Sum

Multifidelity/Multilevel models: f0, . . . , fL−1 are approximations of
f := fL of increasing accuracy, but also increasing computational cost.

The integral can be re-written as:

Π[f ] := Π[fL] = Π[fL − fL−1]

+ Π[fL−1 − fL−2]

+ . . .

+ Π[f1 − f0]

+ Π[f0]
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Multilevel and Multifidelity Methods

Multilevel Monte Carlo

The multilevel Monte Carlo algorithm consists of approximating each
term in the sum with a Monte Carlo estimator.

Π̂MLMC[f ] = Π̂MC[fL − fL−1] + Π̂MC[fL−1 − fL−2] + . . .

+ Π̂MC[f1 − f0] + Π̂MC[f0]

The idea is to evaluate less often the expensive (but accurate) levels
and more often the cheap (but inaccurate) levels.

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328.
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Multilevel and Multifidelity Methods

Optimising the performance of MLMC

Denote by nMLMC = (nMLMC
0 , . . . , nMLMC

L ) the optimal number of
samples per level to obtain a fixed mean squared error. Then:

nMLMC
l ∝

(
Vl

Cl

) 1
2

where

{
Vl = Var[fl − fl−1]

Cl = cost of evaluating fl − fl−1

This is nice, but MC doesn’t use any structure of the integrand.

Of course there have been a *huge* range of extensions of MLMC:

based on points (e.g. importance sampling, QMC, MCMC),
clever selection of levels (e.g. multi-index, adaptive selection),
specialised algorithms for specific classes of integrands (e.g. based on
certain PDEs), etc...
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Multilevel Bayesian Quadrature

Bayesian Quadrature per level...

A very simple idea:

Π̂MLBQ[f ] = Π̂BQ[fL − fL−1] + Π̂BQ[fL−1 − fL−2] + . . .

+ Π̂BQ[f1 − f0] + Π̂BQ[f0]

Diaconis, P. (1988). Bayesian Numerical Analysis. Statistical Decision Theory and Related
Topics IV, 163—175.

O’Hagan, A. (1991). Bayes-Hermite quadrature. Journal of Statistical Planning and Inference,
29, 245-260

Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic
integration: A role in statistical computation? (with discussion). Statistical Science, 34(1), 1-22.
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Multilevel Bayesian Quadrature

Bayesian Quadrature

1 Posit a Gaussian process (GP) prior distribution on f .
2 Condition this GP prior on data (i.e. f (X ) = (f (x1), . . . , f (xn))>).
3 Consider the pushforward of this distribution on Π[f ].
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Multilevel Bayesian Quadrature

Multilevel Bayesian Quadrature
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The posterior much more concentrated on the truth!
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Multilevel Bayesian Quadrature

Multilevel Bayesian Quadrature

Define f−1 = 0 for simplicity. Assume GP(ml , cl) priors on fl − fl−1

and independence across levels, then, given observations

fl(Xl)− fl−1(Xl) = (fl(xl1)− fl−1(xl1), . . . , fl(xlnl )− fl−1(xlnl ))>

for all l , the posterior mean is:

Π̂MLBQ[f ] :=
L∑

l=0

Π[ml ]

− Π[cl(·,Xl)]cl(Xl ,Xl)
−1(fl(Xl)− fl−1(Xl)−ml(Xl))

Computational Cost: O(
∑L

l=0 n
3
l ) instead of O(

∑L
l=0 nl) for MLMC.

This is fine for very expensive integrands!
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Multilevel Bayesian Quadrature

Convergence Guarantees

W τ,2(X ) is the Sobolev space of smoothness τ (with norm ‖ · ‖τ ).

Assume we have a “nice” bounded domain, we choose points
“nicely”, the kernels cl have smoothness αl > d/2, the means fl , fl−1

have smoothness βl > d/2.

Then, writing τl = min(αl , βl), we have:

∣∣∣Π[f ]− Π̂MLBQ[f ]
∣∣∣︸ ︷︷ ︸

integration error

≤
L∑

l=1

al ‖fl − fl−1‖τl︸ ︷︷ ︸
very small!

n
− τl

d
l + a0 ‖f0‖τ0︸ ︷︷ ︸

large

− τ0
d

n0︸︷︷︸
very small!

Teckentrup, A. L. (2020). Convergence of Gaussian process regression with estimated
hyper-parameters and applications in Bayesian inverse problems. SIAM-ASA Journal on
Uncertainty Quantification, 8(4), 1310–1337.

Wynne, G., Briol, F.-X., & Girolami, M. (2021). Convergence guarantees for Gaussian process
means with misspecified likelihoods and smoothness. Journal of Machine Learning Research,
22(123), 1–40.
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Multilevel Bayesian Quadrature

Optimising the performance of MLBQ

Denote by nMLBQ = (nMLBQ
0 , . . . , nMLBQ

L ) the optimal number of
samples per level to obtain a fixed worst-case integration error for
function in W τ,2(X ). We show that:

nMLBQ
l ∝

(
‖fl − fl−1‖τ

Cl

) d
τ+d

where

{
‖ · ‖τ is the norm of W τ,2(X )

Cl = cost of evaluating fl − fl−1

Contrast this with MLMC; looks familiar?

nMLMC
l ∝

(
Vl

Cl

) 1
2

where

{
Vl = Var[fl − fl−1] = ‖fl − fl−1‖L2(Π)

Cl = cost of evaluating fl − fl−1
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Multilevel Bayesian Quadrature

Poisson Equation: A Synthetic Problem

Model: f ′′(x) = z(x) for x ∈ (0, 1), f (0) = f (1) = 0. Integral:
∫ 1

0 f (w)dw .
We use piecewise-linear finite elements with three levels with costs
C = (3.6, 8.5, 42.4) (all in 10−3 seconds) and Matérn 1

2 kernel.

Both the number of points per level and placement of the points matters!
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Multilevel Bayesian Quadrature

Back to Tsunami Models...

PDE-based tsunami model
(non-linear shallow water

equations). Need to incorporate
uncertainty over parameters.

≈ 3 minutes GPU time per
integrand evaluations but... very

smooth and relatively
low-dimensional!
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Multilevel Bayesian Quadrature

Multilevel Bayesian Quadrature for Tsunami Models
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Solver: Volna-OP2, L = 4 , C = (5, 15, 30, 65, 160) (in seconds),
c is a Matérn kernel smoothness 5/2, d = 3.
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Multilevel Bayesian Quadrature for Tsunami Models
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Conclusion

Conclusion
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Conclusion

You Can Try It Out!
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Conclusion

Conclusion

MLMC is great for expensive integration problems, but sometimes you
can do even better by using prior information (i.e. MLBQ).

Bayesian numerical methods can provide an entire posterior
distribution over Π[f ].
This is useful when there is significant numerical error remaining!

The method can be combined with many existing approaches (e.g.
your favourite point set). There is also clearly scope to extend to
adaptive level estimation and refine analysis to specific problems.

Find our more in the paper:

Li, K., Giles, D., Karvonen, T., Guillas, S., & Briol, F.-X. (2023). Multilevel Bayesian
quadrature. International Conference on Artificial Intelligence and Statistics (invited for
oral presentation), 1845–1868.
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