
Nested expectations with 
kernel quadrature 

Dr François-Xavier Briol 
Department of Statistical Science 
University College London 
https://fxbriol.github.io/ 

Hudson Chen Masha Naslidnyk

https://fxbriol.github.io/


Nested expectations

I := ∫Θ
f (∫𝒳

g(x, θ)pθ(x)dx)q(θ)dθ .

Quantity of interest:



Nested expectations
Quantity of interest:

I := ∫Θ
f (∫𝒳

g(x, θ)pθ(x)dx)q(θ)dθ .

inner expectation
(against ℙθ)



Nested expectations
Quantity of interest:

I := ∫Θ
f (∫𝒳

g(x, θ)pθ(x)dx)q(θ)dθ .

inner expectation
(against ℙθ)

outer expectation
(against ℚ)



Nested expectations
Quantity of interest:

I := ∫Θ
f (∫𝒳

g(x, θ)pθ(x)dx)q(θ)dθ .

inner expectation
(against ℙθ)

outer expectation
(against ℚ)

When   is linear, it is a joint expectation, but we will usually be 
interested in non-linear .

f
f



Nested expectations
Quantity of interest:

I := ∫Θ
f (∫𝒳

g(x, θ)pθ(x)dx)q(θ)dθ .

inner expectation
(against ℙθ)

outer expectation
(against ℚ)

When   is linear, it is a joint expectation, but we will usually be 
interested in non-linear .

f
f

I will be using only one level of nesting for simplicity, but we 
may sometimes care about more…



Examples in Stats/ML/UQ
I := ∫Θ

f (∫𝒳
g(x, θ)pθ(x)dx)q(θ)dθ



Examples in Stats/ML/UQ

Batch active learning/Bayesian optimisation (inner: acquisition function for 1st 
point, outer: acquisition function for 2nd point given 1st point)

I := ∫Θ
f (∫𝒳

g(x, θ)pθ(x)dx)q(θ)dθ



Examples in Stats/ML/UQ

Batch active learning/Bayesian optimisation (inner: acquisition function for 1st 
point, outer: acquisition function for 2nd point given 1st point)

Statistical divergences for conditional distributions (inner: standard statistical 
divergence, outer: average over conditioning variable) 

I := ∫Θ
f (∫𝒳

g(x, θ)pθ(x)dx)q(θ)dθ



Examples in Stats/ML/UQ

Batch active learning/Bayesian optimisation (inner: acquisition function for 1st 
point, outer: acquisition function for 2nd point given 1st point)

Bayesian distributionally robust optimisation (inner: expected risk against model, 
outer: expectation over posterior) 

Statistical divergences for conditional distributions (inner: standard statistical 
divergence, outer: average over conditioning variable) 

I := ∫Θ
f (∫𝒳

g(x, θ)pθ(x)dx)q(θ)dθ



Examples in Stats/ML/UQ

Bayesian experimental design (inner: information gain - expectation over posterior, 
outer: expected information gain - expectation over marginal predictive distribution) 

Batch active learning/Bayesian optimisation (inner: acquisition function for 1st 
point, outer: acquisition function for 2nd point given 1st point)

Bayesian distributionally robust optimisation (inner: expected risk against model, 
outer: expectation over posterior) 

Statistical divergences for conditional distributions (inner: standard statistical 
divergence, outer: average over conditioning variable) 

I := ∫Θ
f (∫𝒳

g(x, θ)pθ(x)dx)q(θ)dθ



Examples in other fields
I := ∫Θ

f (∫𝒳
g(x, θ)pθ(x)dx)q(θ)dθ

Option pricing (inner: expected loss given shock , outer: expectation over 
distribution of potential shocks)



Examples in other fields
I := ∫Θ

f (∫𝒳
g(x, θ)pθ(x)dx)q(θ)dθ

Option pricing (inner: expected loss given shock , outer: expectation over 
distribution of potential shocks)

Health economics - Expected value of partial perfect information (inner: 
expected patient outcome given variable of interest, outer: expectation over 
prior beliefs about variable of interest) 



Examples in other fields

……

I := ∫Θ
f (∫𝒳

g(x, θ)pθ(x)dx)q(θ)dθ

Option pricing (inner: expected loss given shock , outer: expectation over 
distribution of potential shocks)

Health economics - Expected value of partial perfect information (inner: 
expected patient outcome given variable of interest, outer: expectation over 
prior beliefs about variable of interest) 



Some desiderata
I := ∫Θ

f (∫𝒳
g(x, θ)pθ(x)dx)q(θ)dθ .

Absolute error = | I − ̂I | ≤ Δ

RMSE = 𝔼[(I − ̂I )2] ≤ Δ{• We define the cost of a method as 
the # function evaluations/samples 
needed for:



Some desiderata
I := ∫Θ

f (∫𝒳
g(x, θ)pθ(x)dx)q(θ)dθ .

Absolute error = | I − ̂I | ≤ Δ

RMSE = 𝔼[(I − ̂I )2] ≤ Δ{• We define the cost of a method as 
the # function evaluations/samples 
needed for:

Cost =  for (very) small O(Δ−r) r
• Ideally, we would like an estimator where



Some desiderata
I := ∫Θ

f (∫𝒳
g(x, θ)pθ(x)dx)q(θ)dθ .

Absolute error = | I − ̂I | ≤ Δ

RMSE = 𝔼[(I − ̂I )2] ≤ Δ{• We define the cost of a method as 
the # function evaluations/samples 
needed for:

Cost =  for (very) small O(Δ−r) r
• Ideally, we would like an estimator where

This is very important as most existing estimators tend to be very expensive.



What to expect….
g(x, θ) = x

5
2 + θ

5
2

f(z) = z2

ℚ = ℙθ = U[0,1]



Nested Monte Carlo

The most obvious estimator:
θ1:T = (θ1, …, θT)⊤ ∼ ℚ
x(t)

1:N = (x(t)
1 , …, x(t)

N )⊤ ∼ ℙθt
, t ∈ {1,…, T}

IID samples:



Nested Monte Carlo

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

The most obvious estimator:
θ1:T = (θ1, …, θT)⊤ ∼ ℚ
x(t)

1:N = (x(t)
1 , …, x(t)

N )⊤ ∼ ℙθt
, t ∈ {1,…, T}

IID samples:

Hong, L. J., & Juneja, S. (2009). Estimating the mean of a non-linear function of conditional 
expectation. Proceedings of the 2009 Winter Simulation Conference, 1223–1236.



Nested Monte Carlo

The most obvious estimator:

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

inner Monte Carlo outer Monte Carlo

θ1:T = (θ1, …, θT)⊤ ∼ ℚ
x(t)

1:N = (x(t)
1 , …, x(t)

N )⊤ ∼ ℙθt
, t ∈ {1,…, T}

IID samples:

Hong, L. J., & Juneja, S. (2009). Estimating the mean of a non-linear function of conditional 
expectation. Proceedings of the 2009 Winter Simulation Conference, 1223–1236.



Convergence of Nested Monte Carlo

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

• Assuming    is Lipschitz, we get:f Δ ≤ C1N− 1
2 + C2T− 1

2



Convergence of Nested Monte Carlo

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

• Assuming    is Lipschitz, we get:f Δ ≤ C1N− 1
2 + C2T− 1

2

Monte Carlo rate!



Convergence of Nested Monte Carlo

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

• Assuming    is Lipschitz, we get:f Δ ≤ C1N− 1
2 + C2T− 1

2

Cost( ̂INMC) = O (Δ−4)• Taking  therefore leads to:N = T

Monte Carlo rate!



Convergence of Nested Monte Carlo

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

• Assuming    is Lipschitz, we get:f Δ ≤ C1N− 1
2 + C2T− 1

2

Cost( ̂INMC) = O (Δ−4)• Taking  therefore leads to:N = T

Monte Carlo rate!

Too large…



Convergence of Nested Monte Carlo

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

• Assuming    is Lipschitz, we get:f Δ ≤ C1N− 1
2 + C2T− 1

2

Cost( ̂INMC) = O (Δ−4)• Taking  therefore leads to:N = T

Monte Carlo rate!

Too large…

• Note: This is biased since we never 
get to evaluate: f (∫𝒳

g(x, θ)pθ(x)dx)



Convergence of Nested Monte Carlo (ctd)

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

• Assuming    has bounded 2nd derivative , we get:f

Δ ≤ C1N−1 + C2T− 1
2

Rainforth, T., Cornish, R., Yang, H., Warrington, A., & Wood, F. (2018). On nesting Monte 
Carlo estimators. International Conference on Machine Learning, 10, 6789–6817.



Convergence of Nested Monte Carlo (ctd)

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

• Assuming    has bounded 2nd derivative , we get:f

Δ ≤ C1N−1 + C2T− 1
2

Better than Monte Carlo rate!

Rainforth, T., Cornish, R., Yang, H., Warrington, A., & Wood, F. (2018). On nesting Monte 
Carlo estimators. International Conference on Machine Learning, 10, 6789–6817.



Convergence of Nested Monte Carlo (ctd)

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

• Assuming    has bounded 2nd derivative , we get:f

Δ ≤ C1N−1 + C2T− 1
2

Cost( ̂INMC) = O (Δ−3)• Taking  leads to:N = T

Better than Monte Carlo rate!

Rainforth, T., Cornish, R., Yang, H., Warrington, A., & Wood, F. (2018). On nesting Monte 
Carlo estimators. International Conference on Machine Learning, 10, 6789–6817.



Convergence of Nested Monte Carlo (ctd)

̂INMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

• Assuming    has bounded 2nd derivative , we get:f

Δ ≤ C1N−1 + C2T− 1
2

Cost( ̂INMC) = O (Δ−3)• Taking  leads to:N = T

Better than Monte Carlo rate!

Smaller than 4, but 
still quite large 

Rainforth, T., Cornish, R., Yang, H., Warrington, A., & Wood, F. (2018). On nesting Monte 
Carlo estimators. International Conference on Machine Learning, 10, 6789–6817.



Nested quasi Monte Carlo
θ1:T = (θ1, …, θT)⊤

x(t)
1:N = (x(t)

1 , …, x(t)
N )⊤, t ∈ {1,…, T}QMC points:



Nested quasi Monte Carlo

̂INQMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

θ1:T = (θ1, …, θT)⊤

x(t)
1:N = (x(t)

1 , …, x(t)
N )⊤, t ∈ {1,…, T}QMC points:

Bartuska, A., Carlon, A. G., Espath, L., Krumscheid, S., & Tempone, R. (2023). Double-loop 
randomized quasi-Monte Carlo estimator for nested integration. arXiv:2302.14119



Nested quasi Monte Carlo

̂INQMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

θ1:T = (θ1, …, θT)⊤

x(t)
1:N = (x(t)

1 , …, x(t)
N )⊤, t ∈ {1,…, T}QMC points:

Bartuska, A., Carlon, A. G., Espath, L., Krumscheid, S., & Tempone, R. (2023). Double-loop 
randomized quasi-Monte Carlo estimator for nested integration. arXiv:2302.14119

Limited to cases where ,  and uniform measures.𝒳 = [0,1]d𝒳 Θ = [0,1]dθ



Nested quasi Monte Carlo

̂INQMC :=
1
T

T

∑
t=1

f ( 1
N

N

∑
n=1

g(x(t)
n , θt)) .

θ1:T = (θ1, …, θT)⊤

x(t)
1:N = (x(t)

1 , …, x(t)
N )⊤, t ∈ {1,…, T}QMC points:

Bartuska, A., Carlon, A. G., Espath, L., Krumscheid, S., & Tempone, R. (2023). Double-loop 
randomized quasi-Monte Carlo estimator for nested integration. arXiv:2302.14119

Limited to cases where ,  and uniform measures.𝒳 = [0,1]d𝒳 Θ = [0,1]dθ

Can get  but requires very strong assumptions on  
(second and third derivatives are monotone).

Cost( ̂INQMC) = O (Δ−2.5) f



Multi-level Monte Carlo
θl

1:T = (θ1, …, θT)⊤, l ∈ {0,…, L}• Back to IID points:

I := ∫Θ
F(θ)q(θ)dθ

• Integrands of increasing fidelity and cost: F0, F1, …, FL = F



Multi-level Monte Carlo
θl

1:T = (θ1, …, θT)⊤, l ∈ {0,…, L}• Back to IID points:

I := ∫Θ
F(θ)q(θ)dθ

• Integrands of increasing fidelity and cost: F0, F1, …, FL = F

= ∫Θ
F0(θ)q(θ)dθ +∫Θ

(F(θ) − F0(θ))q(θ)dθ



Multi-level Monte Carlo
θl

1:T = (θ1, …, θT)⊤, l ∈ {0,…, L}• Back to IID points:

I := ∫Θ
F(θ)q(θ)dθ

• Integrands of increasing fidelity and cost: F0, F1, …, FL = F

= ∫Θ
F0(θ)q(θ)dθ +

L

∑
l=1

∫Θ
(Fl(θ) − Fl−1(θ))q(θ)dθ



Multi-level Monte Carlo
θl

1:T = (θ1, …, θT)⊤, l ∈ {0,…, L}• Back to IID points:

I := ∫Θ
F(θ)q(θ)dθ

• Integrands of increasing fidelity and cost: F0, F1, …, FL = F

= ∫Θ
F0(θ)q(θ)dθ

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328.

≈
1
T0

T0

∑
t=1

F0(θ0
t ) +

L

∑
l=1

1
Tl

Tl

∑
t=1

(Fl(θl
t) − Fl−1(θl

t))

+
L

∑
l=1

∫Θ
(Fl(θ) − Fl−1(θ))q(θ)dθ



Multi-level Monte Carlo
θl

1:T = (θ1, …, θT)⊤, l ∈ {0,…, L}• Back to IID points:

I := ∫Θ
F(θ)q(θ)dθ

• Integrands of increasing fidelity and cost: F0, F1, …, FL = F

= ∫Θ
F0(θ)q(θ)dθ

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328.

≈
1
T0

T0

∑
t=1

F0(θ0
t ) +

L

∑
l=1

1
Tl

Tl

∑
t=1

(Fl(θl
t) − Fl−1(θl

t))

High variance 

+
L

∑
l=1

∫Θ
(Fl(θ) − Fl−1(θ))q(θ)dθ



Multi-level Monte Carlo
θl

1:T = (θ1, …, θT)⊤, l ∈ {0,…, L}• Back to IID points:

I := ∫Θ
F(θ)q(θ)dθ

• Integrands of increasing fidelity and cost: F0, F1, …, FL = F

= ∫Θ
F0(θ)q(θ)dθ

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328.

≈
1
T0

T0

∑
t=1

F0(θ0
t ) +

L

∑
l=1

1
Tl

Tl

∑
t=1

(Fl(θl
t) − Fl−1(θl

t))

Large since cheap
High variance 

+
L

∑
l=1

∫Θ
(Fl(θ) − Fl−1(θ))q(θ)dθ



Multi-level Monte Carlo
θl

1:T = (θ1, …, θT)⊤, l ∈ {0,…, L}• Back to IID points:

I := ∫Θ
F(θ)q(θ)dθ

• Integrands of increasing fidelity and cost: F0, F1, …, FL = F

= ∫Θ
F0(θ)q(θ)dθ

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328.

≈
1
T0

T0

∑
t=1

F0(θ0
t ) +

L

∑
l=1

1
Tl

Tl

∑
t=1

(Fl(θl
t) − Fl−1(θl

t))

Large since cheap
High variance 

(Very) small variance

+
L

∑
l=1

∫Θ
(Fl(θ) − Fl−1(θ))q(θ)dθ



Multi-level Monte Carlo
θl

1:T = (θ1, …, θT)⊤, l ∈ {0,…, L}• Back to IID points:

I := ∫Θ
F(θ)q(θ)dθ

• Integrands of increasing fidelity and cost: F0, F1, …, FL = F

= ∫Θ
F0(θ)q(θ)dθ

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328.

≈
1
T0

T0

∑
t=1

F0(θ0
t ) +

L

∑
l=1

1
Tl

Tl

∑
t=1

(Fl(θl
t) − Fl−1(θl

t))

Large since cheap
High variance Small since expensive

(Very) small variance

+
L

∑
l=1

∫Θ
(Fl(θ) − Fl−1(θ))q(θ)dθ



MLMC for nested expectations

Fl(θ) := f ( 1
Nl

Nl

∑
n=1

g(xn, θ))

θ1:T = (θ1, …, θT)⊤

x(t)
1:N = (x(t)

1 , …, x(t)
N )⊤ ∼ ℙθt

, t ∈ {1,…, T}
IID points:

F(θ) := f (∫ g(x, θ)pθ(x)dx)Define:

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328. (Chapter 9)



MLMC for nested expectations

Fl(θ) := f ( 1
Nl

Nl

∑
n=1

g(xn, θ))

θ1:T = (θ1, …, θT)⊤

x(t)
1:N = (x(t)

1 , …, x(t)
N )⊤ ∼ ℙθt

, t ∈ {1,…, T}
IID points:

F(θ) := f (∫ g(x, θ)pθ(x)dx)Define:

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328. (Chapter 9)

̂IMLMC =
1
T0

T0

∑
t=1

F0(θ0
t ) +

L

∑
l=1

1
Tl

Tl

∑
t=1

(Fl(θl
t) − Fl−1(θl

t))



MLMC for nested expectations

Fl(θ) := f ( 1
Nl

Nl

∑
n=1

g(xn, θ))

θ1:T = (θ1, …, θT)⊤

x(t)
1:N = (x(t)

1 , …, x(t)
N )⊤ ∼ ℙθt

, t ∈ {1,…, T}
IID points:

F(θ) := f (∫ g(x, θ)pθ(x)dx)Define:

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328. (Chapter 9)

̂IMLMC =
1
T0

T0

∑
t=1

F0(θ0
t ) +

L

∑
l=1

1
Tl

Tl

∑
t=1

(Fl(θl
t) − Fl−1(θl

t))

Can get much lower cost: Cost( ̂IMLMC) = O (Δ−2)



MLMC for nested expectations

Fl(θ) := f ( 1
Nl

Nl

∑
n=1

g(xn, θ))

θ1:T = (θ1, …, θT)⊤

x(t)
1:N = (x(t)

1 , …, x(t)
N )⊤ ∼ ℙθt

, t ∈ {1,…, T}
IID points:

F(θ) := f (∫ g(x, θ)pθ(x)dx)Define:

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328. (Chapter 9)

̂IMLMC =
1
T0

T0

∑
t=1

F0(θ0
t ) +

L

∑
l=1

1
Tl

Tl

∑
t=1

(Fl(θl
t) − Fl−1(θl

t))

Can get much lower cost: Cost( ̂IMLMC) = O (Δ−2)

Much better than 
NMC/NQMC!



A comparison of convergence rates



A comparison of convergence rates

To get , we need:Δ = O(0.01)



A comparison of convergence rates

 evaluationsO(106) or O(109)

To get , we need:Δ = O(0.01)



A comparison of convergence rates

 evaluationsO(106) or O(109)

 evaluationsO(105)

To get , we need:Δ = O(0.01)



A comparison of convergence rates

 evaluationsO(104)

 evaluationsO(106) or O(109)

 evaluationsO(105)

To get , we need:Δ = O(0.01)



A comparison of convergence rates

 evaluationsO(104)

 evaluationsO(106) or O(109)

 evaluationsO(105)

To get , we need:Δ = O(0.01)

(  means I am hiding log terms)Õ



A comparison of convergence rates

 evaluationsO(104)

 evaluationsO(106) or O(109)

 evaluationsO(105)

To get , we need:Δ = O(0.01)

Smaller than 2 for sufficiently smooth integrands!
(  means I am hiding log terms)Õ



A comparison of convergence rates

 evaluationsO(104)

 evaluationsO(106) or O(109)

 evaluationsO(105)

To get , we need:Δ = O(0.01)

 evaluations?O(102) or O(103)

Smaller than 2 for sufficiently smooth integrands!
(  means I am hiding log terms)Õ



Quadrature rules

I = ∫𝒳
h(x)π(x)dx

x1:N := [x1, ⋯, xN]⊤ ∈ 𝒳N,

h(x1:N) := [h(x1), ⋯, h(xN)]⊤ ∈ ℝN,

Quantity of interest:

Data:



Quadrature rules

I = ∫𝒳
h(x)π(x)dx

x1:N := [x1, ⋯, xN]⊤ ∈ 𝒳N,

h(x1:N) := [h(x1), ⋯, h(xN)]⊤ ∈ ℝN,

Quantity of interest:

̂I =
N

∑
i=1

wih(xi)Quadrature rule:

Data:



Quadrature rules

I = ∫𝒳
h(x)π(x)dx

x1:N := [x1, ⋯, xN]⊤ ∈ 𝒳N,

h(x1:N) := [h(x1), ⋯, h(xN)]⊤ ∈ ℝN,

Quantity of interest:

̂I =
N

∑
i=1

wih(xi)Quadrature rule:

Data:

Weight  depends on !wi xi



Kernel Quadrature (KQ)
• Compute a kernel ridge regression estimator of  using some 

reproducing kernel :
h

k

ĥ(x) := k(x, x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N)

Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: 
A role in statistical computation? (with discussion). Statistical Science, 34(1), 1–22.



Kernel Quadrature (KQ)
• Compute a kernel ridge regression estimator of  using some 

reproducing kernel :
h

k

ĥ(x) := k(x, x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N)

Gram matrix 

Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: 
A role in statistical computation? (with discussion). Statistical Science, 34(1), 1–22.



Kernel Quadrature (KQ)
• Compute a kernel ridge regression estimator of  using some 

reproducing kernel :
h

k

ĥ(x) := k(x, x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N)

RegulariserGram matrix 

Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: 
A role in statistical computation? (with discussion). Statistical Science, 34(1), 1–22.



Kernel Quadrature (KQ)
• Compute a kernel ridge regression estimator of  using some 

reproducing kernel :
h

k

ĥ(x) := k(x, x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N)

Regulariser
Identity matrix

Gram matrix 

Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: 
A role in statistical computation? (with discussion). Statistical Science, 34(1), 1–22.



Kernel Quadrature (KQ)
• Compute a kernel ridge regression estimator of  using some 

reproducing kernel :
h

k

ĥ(x) := k(x, x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N)

Regulariser
Identity matrix

Gram matrix 

• Use integral of  as our estimator:ĥ
̂IKQ := μπ(x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N) where μπ(x) = ∫𝒳

k(x, x′ )π(x′ )dx′ 

Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: 
A role in statistical computation? (with discussion). Statistical Science, 34(1), 1–22.



Kernel Quadrature (KQ)
• Compute a kernel ridge regression estimator of  using some 

reproducing kernel :
h

k

ĥ(x) := k(x, x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N)

Regulariser
Identity matrix

Gram matrix 

• Use integral of  as our estimator:ĥ
̂IKQ := μπ(x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N) where μπ(x) = ∫𝒳

k(x, x′ )π(x′ )dx′ 

Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: 
A role in statistical computation? (with discussion). Statistical Science, 34(1), 1–22.

Weights!



Kernel Quadrature (KQ)
• Compute a kernel ridge regression estimator of  using some 

reproducing kernel :
h

k

ĥ(x) := k(x, x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N)

Regulariser
Identity matrix

Gram matrix 

• Use integral of  as our estimator:ĥ
̂IKQ := μπ(x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N) where μπ(x) = ∫𝒳

k(x, x′ )π(x′ )dx′ 

Kernel mean embedding!

Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: 
A role in statistical computation? (with discussion). Statistical Science, 34(1), 1–22.

Weights!



Kernel Quadrature (KQ)
• Compute a kernel ridge regression estimator of  using some 

reproducing kernel :
h

k

ĥ(x) := k(x, x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N)

Regulariser
Identity matrix

Gram matrix 

• Use integral of  as our estimator:ĥ
̂IKQ := μπ(x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N) where μπ(x) = ∫𝒳

k(x, x′ )π(x′ )dx′ 

Kernel mean embedding!

• Closely relates to Bayesian quadrature (same procedure but with GP regression).

Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: 
A role in statistical computation? (with discussion). Statistical Science, 34(1), 1–22.

Weights!



Closed-form embeddings
We need closed-form kernel mean embeddings; this is not always straightforward!

μπ(x) = ∫𝒳
k(x, x′ )π(x′ )dx′ 



Closed-form embeddings
We need closed-form kernel mean embeddings; this is not always straightforward!

μπ(x) = ∫𝒳
k(x, x′ )π(x′ )dx′ 

• Trick 1: Stein reproducing kernels: Construct a reproducing kernel only depending 
on  where the kernel mean embedding is zero by construction!∇xlog π(x)



Closed-form embeddings
We need closed-form kernel mean embeddings; this is not always straightforward!

μπ(x) = ∫𝒳
k(x, x′ )π(x′ )dx′ 

• Trick 1: Stein reproducing kernels: Construct a reproducing kernel only depending 
on  where the kernel mean embedding is zero by construction!∇xlog π(x)

• Trick 2: change of variables: Do a transformation so that the integral is against a 
simple measure for which we know a closed-form embedding formula.



Closed-form embeddings
We need closed-form kernel mean embeddings; this is not always straightforward!

μπ(x) = ∫𝒳
k(x, x′ )π(x′ )dx′ 

• Trick 1: Stein reproducing kernels: Construct a reproducing kernel only depending 
on  where the kernel mean embedding is zero by construction!∇xlog π(x)

• Trick 2: change of variables: Do a transformation so that the integral is against a 
simple measure for which we know a closed-form embedding formula.

Anastasiou, A., et al. (2023). Stein’s method meets computational statistics: A review of some recent developments. Statistical Science, 38(1), 120–139.
Briol, F-X., Gessner, A., Karvonen, T., Mahsereci, M (2025). A dictionary of closed-form kernel mean embeddings. (to appear; next week?)



Advantages/Disadvantages of KQ

Disadvantages:

• Computational cost is  in the worst-case due to matrix inversion.O(N3)

• Need closed-form kernel mean embeddings (but can be mitigated with two tricks).



Advantages/Disadvantages of KQ

Disadvantages:

• Computational cost is  in the worst-case due to matrix inversion.O(N3)

• Need closed-form kernel mean embeddings (but can be mitigated with two tricks).

Advantages:

• Typically converges much faster than alternative estimators when 
integrand is smooth and not too high-dimensional!



Nested Kernel Quadrature
Stage I: Compute KQ estimators (with ) 
for inner expectations; i.e. for integrals of 

.  

Denote these .

k𝒳

g( ⋅ , θ1), …, g( ⋅ , θT)
̂JKQ(θ1), …, ̂JKQ(θT)



Nested Kernel Quadrature
Stage I: Compute KQ estimators (with ) 
for inner expectations; i.e. for integrals of 

.  

Denote these .

k𝒳

g( ⋅ , θ1), …, g( ⋅ , θT)
̂JKQ(θ1), …, ̂JKQ(θT)



Nested Kernel Quadrature
Stage I: Compute KQ estimators (with ) 
for inner expectations; i.e. for integrals of 

.  

Denote these .

k𝒳

g( ⋅ , θ1), …, g( ⋅ , θT)
̂JKQ(θ1), …, ̂JKQ(θT)



Nested Kernel Quadrature
Stage I: Compute KQ estimators (with ) 
for inner expectations; i.e. for integrals of 

.  

Denote these .

k𝒳

g( ⋅ , θ1), …, g( ⋅ , θT)
̂JKQ(θ1), …, ̂JKQ(θT)

Stage II: Compute a KQ estimator (with 
) for outer expectation; i.e. integral of kΘ

F(θ) = f(∫𝒳
g(x, θ)pθ(x)dx)

using noisy data from stage I:

 ̂FKQ(θt) = f( ̂JKQ(θt)) ≈ F(θt)



Nested Kernel Quadrature
Stage I: Compute KQ estimators (with ) 
for inner expectations; i.e. for integrals of 

.  

Denote these .

k𝒳

g( ⋅ , θ1), …, g( ⋅ , θT)
̂JKQ(θ1), …, ̂JKQ(θT)

Stage II: Compute a KQ estimator (with 
) for outer expectation; i.e. integral of kΘ

F(θ) = f(∫𝒳
g(x, θ)pθ(x)dx)

using noisy data from stage I:

 ̂FKQ(θt) = f( ̂JKQ(θt)) ≈ F(θt)



Nested Kernel Quadrature
Stage I: Compute KQ estimators (with ) 
for inner expectations; i.e. for integrals of 

.  

Denote these .

k𝒳

g( ⋅ , θ1), …, g( ⋅ , θT)
̂JKQ(θ1), …, ̂JKQ(θT)

Stage II: Compute a KQ estimator (with 
) for outer expectation; i.e. integral of kΘ

F(θ) = f(∫𝒳
g(x, θ)pθ(x)dx)

using noisy data from stage I:

 ̂FKQ(θt) = f( ̂JKQ(θt)) ≈ F(θt)
̂INKQ =

T

∑
t=1

wΘ
t f(

N

∑
i=1

w𝒳
n,tg(x(t)

n , θt))



Convergence guarantees for NKQ
• Theorem (informal): Let  and . Under regularity assumptions including𝒳 = [0,1]d𝒳 Θ = [0,1]dΘ



Convergence guarantees for NKQ
• Theorem (informal): Let  and . Under regularity assumptions including𝒳 = [0,1]d𝒳 Θ = [0,1]dΘ

• The samples  and  are iid from  and  respectively.x(t)
1:N θ1:T ℙθt

ℚ



Convergence guarantees for NKQ
• Theorem (informal): Let  and . Under regularity assumptions including𝒳 = [0,1]d𝒳 Θ = [0,1]dΘ

• The samples  and  are iid from  and  respectively.x(t)
1:N θ1:T ℙθt

ℚ

• The kernels  and  have (Sobolev) smoothness  and  respectively.k𝒳 kΘ s𝒳 ≥
d𝒳

2
sΘ ≥

dΘ

2



Convergence guarantees for NKQ
• Theorem (informal): Let  and . Under regularity assumptions including𝒳 = [0,1]d𝒳 Θ = [0,1]dΘ

• The samples  and  are iid from  and  respectively.x(t)
1:N θ1:T ℙθt

ℚ

• ,  and  have smoothness .f ∈ CsΘ+1
b θ ↦ pθ(x) θ ↦ g(x, θ) sΘ

• The kernels  and  have (Sobolev) smoothness  and  respectively.k𝒳 kΘ s𝒳 ≥
d𝒳

2
sΘ ≥

dΘ

2



Convergence guarantees for NKQ
• Theorem (informal): Let  and . Under regularity assumptions including𝒳 = [0,1]d𝒳 Θ = [0,1]dΘ

• The samples  and  are iid from  and  respectively.x(t)
1:N θ1:T ℙθt

ℚ

• ,  and  have smoothness .f ∈ CsΘ+1
b θ ↦ pθ(x) θ ↦ g(x, θ) sΘ

• The kernels  and  have (Sobolev) smoothness  and  respectively.k𝒳 kΘ s𝒳 ≥
d𝒳

2
sΘ ≥

dΘ

2

•  has smoothness  for all  with .x ↦ Dβ
θ g(x, θ) s𝒳 β ∈ ℕdΘ

0 |β | ≤ sΘ



Convergence guarantees for NKQ
• Theorem (informal): Let  and . Under regularity assumptions including𝒳 = [0,1]d𝒳 Θ = [0,1]dΘ

• The samples  and  are iid from  and  respectively.x(t)
1:N θ1:T ℙθt

ℚ

• ,  and  have smoothness .f ∈ CsΘ+1
b θ ↦ pθ(x) θ ↦ g(x, θ) sΘ

• The kernels  and  have (Sobolev) smoothness  and  respectively.k𝒳 kΘ s𝒳 ≥
d𝒳

2
sΘ ≥

dΘ

2

Δ = ̂INKQ − I = Õ(N− s𝒳
d𝒳 + T− sΘ

dΘ )
Then, taking  and , we get that for  large enough the 
following holds with high prob:

λ𝒳 = Õ(N− 2s𝒳
d𝒳 ) λΘ = Õ(T− 2sΘ

dΘ ) N, T

•  has smoothness  for all  with .x ↦ Dβ
θ g(x, θ) s𝒳 β ∈ ℕdΘ

0 |β | ≤ sΘ



Convergence guarantees for NKQ
• Theorem (informal): Let  and . Under regularity assumptions including𝒳 = [0,1]d𝒳 Θ = [0,1]dΘ

• The samples  and  are iid from  and  respectively.x(t)
1:N θ1:T ℙθt

ℚ

• ,  and  have smoothness .f ∈ CsΘ+1
b θ ↦ pθ(x) θ ↦ g(x, θ) sΘ

• The kernels  and  have (Sobolev) smoothness  and  respectively.k𝒳 kΘ s𝒳 ≥
d𝒳

2
sΘ ≥

dΘ

2

Δ = ̂INKQ − I = Õ(N− s𝒳
d𝒳 + T− sΘ

dΘ )
Then, taking  and , we get that for  large enough the 
following holds with high prob:

λ𝒳 = Õ(N− 2s𝒳
d𝒳 ) λΘ = Õ(T− 2sΘ

dΘ ) N, T

•  has smoothness  for all  with .x ↦ Dβ
θ g(x, θ) s𝒳 β ∈ ℕdΘ

0 |β | ≤ sΘ

Fast! Much better than MC!



Cost of NKQ
Δ = ̂INKQ − I = Õ(N− s𝒳

d𝒳 + T− sΘ
dΘ )

• This fast (interpolation-type) rate is surprising given we are using noisy function 
values for approximating the outer expectation, so we should expect a regression rate!

Fischer, S., & Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares algorithm. Journal of Machine Learning Research, 21(205), 1–38.



Cost of NKQ
Δ = ̂INKQ − I = Õ(N− s𝒳

d𝒳 + T− sΘ
dΘ )

• Taking  and , we get:N = Õ(Δ− d𝒳
s𝒳 ) T = Õ(Δ− dΘ

sΘ ) Cost( ̂INKQ) = Õ(Δ− d𝒳
s𝒳

− dΘ
sΘ )

• This fast (interpolation-type) rate is surprising given we are using noisy function 
values for approximating the outer expectation, so we should expect a regression rate!

Fischer, S., & Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares algorithm. Journal of Machine Learning Research, 21(205), 1–38.



Cost of NKQ
Δ = ̂INKQ − I = Õ(N− s𝒳

d𝒳 + T− sΘ
dΘ )

• Recall that  and , so we get at worse the NMC rate:s𝒳 ≥ d𝒳 /2 sΘ ≥ dΘ/2 Õ(Δ−4)

• Taking  and , we get:N = Õ(Δ− d𝒳
s𝒳 ) T = Õ(Δ− dΘ

sΘ ) Cost( ̂INKQ) = Õ(Δ− d𝒳
s𝒳

− dΘ
sΘ )

• This fast (interpolation-type) rate is surprising given we are using noisy function 
values for approximating the outer expectation, so we should expect a regression rate!

Fischer, S., & Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares algorithm. Journal of Machine Learning Research, 21(205), 1–38.



Cost of NKQ
Δ = ̂INKQ − I = Õ(N− s𝒳

d𝒳 + T− sΘ
dΘ )

• Recall that  and , so we get at worse the NMC rate:s𝒳 ≥ d𝒳 /2 sΘ ≥ dΘ/2 Õ(Δ−4)

• Taking  and , we get:N = Õ(Δ− d𝒳
s𝒳 ) T = Õ(Δ− dΘ

sΘ ) Cost( ̂INKQ) = Õ(Δ− d𝒳
s𝒳

− dΘ
sΘ )

When  and  are large enough, we can beat NQMC and MLMC!s𝒳 sΘ

• This fast (interpolation-type) rate is surprising given we are using noisy function 
values for approximating the outer expectation, so we should expect a regression rate!

Fischer, S., & Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares algorithm. Journal of Machine Learning Research, 21(205), 1–38.



Back to the synthetic experiment g(x, θ) = x
5
2 + θ

5
2

f(z) = z2

ℚ = ℙθ = U[0,1]



Back to the synthetic experiment g(x, θ) = x
5
2 + θ

5
2

f(z) = z2

ℚ = ℙθ = U[0,1]

As predicted by NMC 
theory,  gives the 
slower rate: 

N = T
O(Δ−4)



Back to the synthetic experiment g(x, θ) = x
5
2 + θ

5
2

f(z) = z2

ℚ = ℙθ = U[0,1]

As predicted by NMC 
theory,  gives the 
slower rate: 

N = T
O(Δ−4)

Taking  gives 
the faster rate:  
since integrand nice.

N = T
O(Δ−3)



Back to the synthetic experiment g(x, θ) = x
5
2 + θ

5
2

f(z) = z2

ℚ = ℙθ = U[0,1]

For NKQ,  is 
sub-optimal.

N = T



Back to the synthetic experiment g(x, θ) = x
5
2 + θ

5
2

f(z) = z2

ℚ = ℙθ = U[0,1]

As predicted by our theorem, 
 gives a fast rate!N = T

For NKQ,  is 
sub-optimal.

N = T



We suffer in high dimensions… g(x, θ) = ∥x∥
5
2
2 + ∥θ∥

5
2
2

f(z) = z2

ℚ = ℙθ = U[0,1]



We suffer in high dimensions… g(x, θ) = ∥x∥
5
2
2 + ∥θ∥

5
2
2

f(z) = z2

ℚ = ℙθ = U[0,1]

We do great in one 
dimension (as seen 
previously)



We suffer in high dimensions… g(x, θ) = ∥x∥
5
2
2 + ∥θ∥

5
2
2

f(z) = z2

ℚ = ℙθ = U[0,1]

We do much worse 
in higher dimensions!



Option pricing • Problem: Pricing of options; expected 
loss of portfolio in the presence of 
potential economic shock. 

Chen, Z., Naslidnyk, M., Gretton, A., & Briol, F.-X. (2024). Conditional 
Bayesian quadrature. Uncertainty in Artificial Intelligence, 648–684.



Option pricing • Problem: Pricing of options; expected 
loss of portfolio in the presence of 
potential economic shock. 

• We used  and  with .k𝒳 kΘ s𝒳 = sΘ = 1

• Some of the assumptions are broken 
(unbounded domain, )f ∉ C2

b

Chen, Z., Naslidnyk, M., Gretton, A., & Briol, F.-X. (2024). Conditional 
Bayesian quadrature. Uncertainty in Artificial Intelligence, 648–684.



Option pricing

Approx 100x smaller error than NMC

• Problem: Pricing of options; expected 
loss of portfolio in the presence of 
potential economic shock. 

• We used  and  with .k𝒳 kΘ s𝒳 = sΘ = 1

• Some of the assumptions are broken 
(unbounded domain, )f ∉ C2

b

Chen, Z., Naslidnyk, M., Gretton, A., & Briol, F.-X. (2024). Conditional 
Bayesian quadrature. Uncertainty in Artificial Intelligence, 648–684.



Option pricing

Approx 10x smaller error than MLMC

Approx 100x smaller error than NMC

• Problem: Pricing of options; expected 
loss of portfolio in the presence of 
potential economic shock. 

• We used  and  with .k𝒳 kΘ s𝒳 = sΘ = 1

• Some of the assumptions are broken 
(unbounded domain, )f ∉ C2

b

Chen, Z., Naslidnyk, M., Gretton, A., & Briol, F.-X. (2024). Conditional 
Bayesian quadrature. Uncertainty in Artificial Intelligence, 648–684.



Option pricing

Approx 10x smaller error than MLMC

Approx 100x smaller error than NMC

• Problem: Pricing of options; expected 
loss of portfolio in the presence of 
potential economic shock. 

• We used  and  with .k𝒳 kΘ s𝒳 = sΘ = 1

• Some of the assumptions are broken 
(unbounded domain, )f ∉ C2

b

• We have Cost =  and estimated:O(Δ−r)
•  ( )̂rNMC = 2.97 rNMC = 3

•  ̂rNKQ = 1.9 (rNKQ = 2)

Chen, Z., Naslidnyk, M., Gretton, A., & Briol, F.-X. (2024). Conditional 
Bayesian quadrature. Uncertainty in Artificial Intelligence, 648–684.



Health economics • Problem: Computing the expected value of 
partial perfect information. QoI for deciding 
whether we want to collect measurements on 
more variables from patients.

• We use .s𝒳 = sΘ = ∞

Hironaka, T., Giles, M. B., Goda, T., & Thom, H. (2020). Multilevel Monte Carlo estimation of the expected 
value of sample information. SIAM-ASA Journal on Uncertainty Quantification, 8(3), 1236–1259.



Health economics

Approx 3x smaller error than NMC

• Problem: Computing the expected value of 
partial perfect information. QoI for deciding 
whether we want to collect measurements on 
more variables from patients.

• We use .s𝒳 = sΘ = ∞

Hironaka, T., Giles, M. B., Goda, T., & Thom, H. (2020). Multilevel Monte Carlo estimation of the expected 
value of sample information. SIAM-ASA Journal on Uncertainty Quantification, 8(3), 1236–1259.



Health economics

Approx 3x smaller error than NMC

Much smaller gains….

• Problem: Computing the expected value of 
partial perfect information. QoI for deciding 
whether we want to collect measurements on 
more variables from patients.

• We use .s𝒳 = sΘ = ∞

Hironaka, T., Giles, M. B., Goda, T., & Thom, H. (2020). Multilevel Monte Carlo estimation of the expected 
value of sample information. SIAM-ASA Journal on Uncertainty Quantification, 8(3), 1236–1259.



Health economics

Approx 3x smaller error than NMC

Much smaller gains….

Why not as good?
• The problem is high-dimensional:

d𝒳 = 17

• Problem: Computing the expected value of 
partial perfect information. QoI for deciding 
whether we want to collect measurements on 
more variables from patients.

• We use .s𝒳 = sΘ = ∞

Hironaka, T., Giles, M. B., Goda, T., & Thom, H. (2020). Multilevel Monte Carlo estimation of the expected 
value of sample information. SIAM-ASA Journal on Uncertainty Quantification, 8(3), 1236–1259.



Health economics

Approx 3x smaller error than NMC

Much smaller gains….

Why not as good?
• The problem is high-dimensional:

d𝒳 = 17

• Problem: Computing the expected value of 
partial perfect information. QoI for deciding 
whether we want to collect measurements on 
more variables from patients.

• We use .s𝒳 = sΘ = ∞

We might still be very happy with 3x smaller error for small  & !!N T
Hironaka, T., Giles, M. B., Goda, T., & Thom, H. (2020). Multilevel Monte Carlo estimation of the expected 

value of sample information. SIAM-ASA Journal on Uncertainty Quantification, 8(3), 1236–1259.



Look-ahead Bayesian optimisation

Yang, S., Zankin, V., Balandat, M., Scherer, S., Carlberg, K., Walton, N., & Law, K. J. H. (2024). Accelerating look-ahead in Bayesian 
optimization: Multilevel Monte Carlo is all you need. International Conference on Machine Learning, 56722–56748.

• Problem: Repeatedly computing and optimising acquisition function for 2-step look-ahead 
Bayesian optimisation. This requires compute a very large number of nested expectations. 



Look-ahead Bayesian optimisation

• Wen have . We chose  for NMC, and  for NKQ.d𝒳 = dΘ = 2 N = T = Δ−2 N = T = Δ−1

Yang, S., Zankin, V., Balandat, M., Scherer, S., Carlberg, K., Walton, N., & Law, K. J. H. (2024). Accelerating look-ahead in Bayesian 
optimization: Multilevel Monte Carlo is all you need. International Conference on Machine Learning, 56722–56748.

• Problem: Repeatedly computing and optimising acquisition function for 2-step look-ahead 
Bayesian optimisation. This requires compute a very large number of nested expectations. 



Look-ahead Bayesian optimisation

• Wen have . We chose  for NMC, and  for NKQ.d𝒳 = dΘ = 2 N = T = Δ−2 N = T = Δ−1

Yang, S., Zankin, V., Balandat, M., Scherer, S., Carlberg, K., Walton, N., & Law, K. J. H. (2024). Accelerating look-ahead in Bayesian 
optimization: Multilevel Monte Carlo is all you need. International Conference on Machine Learning, 56722–56748.

• Problem: Repeatedly computing and optimising acquisition function for 2-step look-ahead 
Bayesian optimisation. This requires compute a very large number of nested expectations. 

• Cubic cost for NKQ only occurs once since the matrix inverses can be re-used (through 
change of variable trick).



Summary and future work
• Summary: New estimator whose cost is orders of magnitude smaller than 

competitors when the integrands are smooth and dimensions not too high:

Cost( ̂INKQ) = Õ(Δ− d𝒳
s𝒳

− dΘ
sΘ )



Summary and future work
• Summary: New estimator whose cost is orders of magnitude smaller than 

competitors when the integrands are smooth and dimensions not too high:

Cost( ̂INKQ) = Õ(Δ− d𝒳
s𝒳

− dΘ
sΘ )

• Interesting extensions:

• Nested Bayesian quadrature? Useful for uncertainty quantification and active 
learning, but challenging propagation of uncertainty due to non-linearity of .f



Summary and future work
• Summary: New estimator whose cost is orders of magnitude smaller than 

competitors when the integrands are smooth and dimensions not too high:

Cost( ̂INKQ) = Õ(Δ− d𝒳
s𝒳

− dΘ
sΘ )

• Interesting extensions:

• Nested Bayesian quadrature? Useful for uncertainty quantification and active 
learning, but challenging propagation of uncertainty due to non-linearity of .f

• In-depth study of multilevel KQ approach?

Li, K., Giles, D., Karvonen, T., Guillas, S., & Briol, F.-X. (2023). Multilevel Bayesian quadrature. 
International Conference on Artificial Intelligence and Statistics (with oral presentation), 1845–1868.



Any Questions?

Chen, Z., Naslidnyk, M., & Briol, F.-X. (2025). Nested expectations with kernel quadrature. arXiv:2502.18284.


