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I will be using only one level of nesting for simplicity, but we 
may sometimes care about more…
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f (∫𝒳
g(x, θ)pθ(x)dx)q(θ)dθ .

Absolute error = | I − ̂I | ≤ Δ

RMSE = 𝔼[(I − ̂I )2] ≤ Δ{• We define the cost of a method as 
the # function evaluations/samples 
needed for:

Cost =  for (very) small O(Δ−r) r
• Ideally, we would like an estimator where

This is very important as most existing estimators tend to be very expensive.



What to expect….
g(x, θ) = x

5
2 + θ

5
2

f(z) = z2

ℚ = ℙθ = U[0,1]
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A comparison of convergence rates

 evaluationsO(104)

 evaluationsO(106) or O(109)

 evaluationsO(105)

To get , we need:Δ = O(0.01)

Smaller than 2 for sufficiently smooth integrands!
(  means I am hiding log terms)Õ
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Weight  depends on !wi xi
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ĥ(x) := k(x, x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N)

Regulariser
Identity matrix

Gram matrix 

• Use integral of  as our estimator:ĥ
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We need closed-form kernel mean embeddings; this is not always straightforward!

μπ(x) = ∫𝒳
k(x, x′￼)π(x′￼)dx′￼

• Trick 1: Stein reproducing kernels: Construct a reproducing kernel only depending 
on  where the kernel mean embedding is zero by construction!∇xlog π(x)

• Trick 2: change of variables: Do a transformation so that the integral is against a 
simple measure for which we know a closed-form embedding formula.

Anastasiou, A., et al. (2023). Stein’s method meets computational statistics: A review of some recent developments. Statistical Science, 38(1), 120–139.
Briol, F-X., Gessner, A., Karvonen, T., Mahsereci, M (2025). A dictionary of closed-form kernel mean embeddings. (to appear; next week?)
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dΘ ) N, T

•  has smoothness  for all  with .x ↦ Dβ
θ g(x, θ) s𝒳 β ∈ ℕdΘ

0 |β | ≤ sΘ

Fast! Much better than MC!



Cost of NKQ
Δ = ̂INKQ − I = Õ(N− s𝒳
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s𝒳

− dΘ
sΘ )

• This fast (interpolation-type) rate is surprising given we are using noisy function 
values for approximating the outer expectation, so we should expect a regression rate!

Fischer, S., & Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares algorithm. Journal of Machine Learning Research, 21(205), 1–38.



Cost of NKQ
Δ = ̂INKQ − I = Õ(N− s𝒳
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𝒳  T = Õ(Δ− dΘ

sΘ ) Cost( ̂INKQ) = Õ(Δ− d𝒳
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When  and  are large enough, we can beat NQMC and MLMC!s𝒳 sΘ

• This fast (interpolation-type) rate is surprising given we are using noisy function 
values for approximating the outer expectation, so we should expect a regression rate!

Fischer, S., & Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares algorithm. Journal of Machine Learning Research, 21(205), 1–38.
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As predicted by our theorem, 
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For NKQ,  is 
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5
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5
2
2

f(z) = z2

ℚ = ℙθ = U[0,1]

We do much worse 
in higher dimensions!
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Option pricing
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Approx 100x smaller error than NMC

• Problem: Pricing of options; expected 
loss of portfolio in the presence of 
potential economic shock. 

• We used  and  with .k𝒳 kΘ s𝒳   

• Some of the assumptions are broken 
(unbounded domain, )f ∉ C2

b

• We have Cost =  and estimated:O(Δ−r)
•  ( )̂rNMC = 2.97 rNMC = 3

•  ̂rNKQ = 1.9 (rNKQ = 2)

Chen, Z., Naslidnyk, M., Gretton, A., & Briol, F.-X. (2024). Conditional 
Bayesian quadrature. Uncertainty in Artificial Intelligence, 648–684.
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Hironaka, T., Giles, M. B., Goda, T., & Thom, H. (2020). Multilevel Monte Carlo estimation of the expected 
value of sample information. SIAM-ASA Journal on Uncertainty Quantification, 8(3), 1236–1259.
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Much smaller gains….

Why not as good?
• The problem is high-dimensional:

d𝒳 = 17

• Problem: Computing the expected value of 
partial perfect information. QoI for deciding 
whether we want to collect measurements on 
more variables from patients.

• We use .s𝒳   

We might still be very happy with 3x smaller error for small  & !!N T
Hironaka, T., Giles, M. B., Goda, T., & Thom, H. (2020). Multilevel Monte Carlo estimation of the expected 

value of sample information. SIAM-ASA Journal on Uncertainty Quantification, 8(3), 1236–1259.
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Yang, S., Zankin, V., Balandat, M., Scherer, S., Carlberg, K., Walton, N., & Law, K. J. H. (2024). Accelerating look-ahead in Bayesian 
optimization: Multilevel Monte Carlo is all you need. International Conference on Machine Learning, 56722–56748.

• Problem: Repeatedly computing and optimising acquisition function for 2-step look-ahead 
Bayesian optimisation. This requires compute a very large number of nested expectations. 
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Look-ahead Bayesian optimisation

• Wen have . We chose  for NMC, and  for NKQ.d𝒳 = dΘ = 2 N = T = Δ−2 N = T = Δ−1

Yang, S., Zankin, V., Balandat, M., Scherer, S., Carlberg, K., Walton, N., & Law, K. J. H. (2024). Accelerating look-ahead in Bayesian 
optimization: Multilevel Monte Carlo is all you need. International Conference on Machine Learning, 56722–56748.

• Problem: Repeatedly computing and optimising acquisition function for 2-step look-ahead 
Bayesian optimisation. This requires compute a very large number of nested expectations. 

• Cubic cost for NKQ only occurs once since the matrix inverses can be re-used (through 
change of variable trick).
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• In-depth study of multilevel KQ approach?

Li, K., Giles, D., Karvonen, T., Guillas, S., & Briol, F.-X. (2023). Multilevel Bayesian quadrature. 
International Conference on Artificial Intelligence and Statistics (with oral presentation), 1845–1868.



Any Questions?

Chen, Z., Naslidnyk, M., & Briol, F.-X. (2025). Nested expectations with kernel quadrature. arXiv:2502.18284.


