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I will be using only one level of nesting for simplicity, but we 
may sometimes care about more…
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f (∫𝒳
g(x, θ)pθ(x)dx)q(θ)dθ .

Absolute error = | I − ̂I | ≤ Δ

RMSE = 𝔼[(I − ̂I )2] ≤ Δ{• We define the cost of a method as 
the # function evaluations/samples 
needed for:

Cost =  for (very) small O(Δ−r) r
• Ideally, we would like an estimator where

This is very important as most existing estimators tend to be very expensive.



What to expect….
g(x, θ) = x

5
2 + θ

5
2

f(z) = z2

ℚ = ℙθ = U[0,1]
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h(x1:N) := [h(x1), ⋯, h(xN)]⊤ ∈ ℝN,

Quantity of interest:
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N

∑
i=1

wih(xi)Quadrature rule:

Data:

Weight  depends on !wi xi
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ĥ(x) := k(x, x1:N)(k(x1:N, x1:N) + NλIN)−1h(x1:N)

RegulariserGram matrix 

Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: 
A role in statistical computation? (with discussion). Statistical Science, 34(1), 1–22.



Kernel Quadrature (KQ)
• Compute a kernel ridge regression estimator of  using some 

reproducing kernel :
h

k
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Kernel mean embedding!
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Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: 
A role in statistical computation? (with discussion). Statistical Science, 34(1), 1–22.

Weights!



Closed-form embeddings
We need closed-form kernel mean embeddings; this is not always straightforward!

μπ(x) = ∫𝒳
k(x, x′ )π(x′ )dx′ 



Closed-form embeddings
We need closed-form kernel mean embeddings; this is not always straightforward!

μπ(x) = ∫𝒳
k(x, x′ )π(x′ )dx′ 

• Trick 1: Stein reproducing kernels: Construct a reproducing kernel only depending 
on  where the kernel mean embedding is zero by construction!∇xlog π(x)



Closed-form embeddings
We need closed-form kernel mean embeddings; this is not always straightforward!

μπ(x) = ∫𝒳
k(x, x′ )π(x′ )dx′ 

• Trick 1: Stein reproducing kernels: Construct a reproducing kernel only depending 
on  where the kernel mean embedding is zero by construction!∇xlog π(x)

• Trick 2: change of variables: Do a transformation so that the integral is against a 
simple measure for which we know a closed-form embedding formula.



Closed-form embeddings
We need closed-form kernel mean embeddings; this is not always straightforward!

μπ(x) = ∫𝒳
k(x, x′ )π(x′ )dx′ 

• Trick 1: Stein reproducing kernels: Construct a reproducing kernel only depending 
on  where the kernel mean embedding is zero by construction!∇xlog π(x)

• Trick 2: change of variables: Do a transformation so that the integral is against a 
simple measure for which we know a closed-form embedding formula.

Anastasiou, A., et al. (2023). Stein’s method meets computational statistics: A review of some recent developments. Statistical Science, 38(1), 120–139.
Briol, F-X., Gessner, A., Karvonen, T., Mahsereci, M (2025). A dictionary of closed-form kernel mean embeddings. (to appear; next week?)
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Advantages:

• Typically converges much faster than alternative estimators when 
integrand is smooth and not too high-dimensional!
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Stage II: Compute a KQ estimator (with 
) for outer expectation; i.e. integral of kΘ

F(θ) = f(∫𝒳
g(x, θ)pθ(x)dx)

using noisy data from stage I:

 ̂FKQ(θt) = f( ̂JKQ(θt)) ≈ F(θt)
̂INKQ =
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∑
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wΘ
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N
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•  has smoothness  for all  with .x ↦ Dβ
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0 |β | ≤ sΘ

Fast! Much better than MC!
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• Recall that  and , so we get at worse the NMC rate:s𝒳 ≥ d𝒳 /2 sΘ ≥ dΘ/2 Õ(Δ−4)

• Taking  and , we get:N = Õ(Δ− d𝒳
s𝒳 ) T = Õ(Δ− dΘ

sΘ ) Cost( ̂INKQ) = Õ(Δ− d𝒳
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When  and  are large enough, we can beat NQMC and MLMC!s𝒳 sΘ

• This fast (interpolation-type) rate is surprising given we are using noisy function 
values for approximating the outer expectation, so we should expect a regression rate!

Fischer, S., & Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares algorithm. Journal of Machine Learning Research, 21(205), 1–38.
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Taking  gives 
the faster rate:  
since integrand nice.
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ℚ = ℙθ = U[0,1]

As predicted by our theorem, 
 gives a fast rate!N = T

For NKQ,  is 
sub-optimal.
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previously)



We suffer in high dimensions… g(x, θ) = ∥x∥
5
2
2 + ∥θ∥

5
2
2

f(z) = z2

ℚ = ℙθ = U[0,1]

We do much worse 
in higher dimensions!
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Option pricing

Approx 10x smaller error than MLMC

Approx 100x smaller error than NMC

• Problem: Pricing of options; expected 
loss of portfolio in the presence of 
potential economic shock. 

• We used  and  with .k𝒳 kΘ s𝒳 = sΘ = 1

• Some of the assumptions are broken 
(unbounded domain, )f ∉ C2

b

• We have Cost =  and estimated:O(Δ−r)
•  ( )̂rNMC = 2.97 rNMC = 3

•  ̂rNKQ = 1.9 (rNKQ = 2)

Chen, Z., Naslidnyk, M., Gretton, A., & Briol, F.-X. (2024). Conditional 
Bayesian quadrature. Uncertainty in Artificial Intelligence, 648–684.
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Much smaller gains….

Why not as good?
• The problem is high-dimensional:

d𝒳 = 17

• Problem: Computing the expected value of 
partial perfect information. QoI for deciding 
whether we want to collect measurements on 
more variables from patients.

• We use .s𝒳 = sΘ = ∞

We might still be very happy with 3x smaller error for small  & !!N T
Hironaka, T., Giles, M. B., Goda, T., & Thom, H. (2020). Multilevel Monte Carlo estimation of the expected 

value of sample information. SIAM-ASA Journal on Uncertainty Quantification, 8(3), 1236–1259.
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• Problem: Repeatedly computing and optimising acquisition function for 2-step look-ahead 
Bayesian optimisation. This requires compute a very large number of nested expectations. 



Look-ahead Bayesian optimisation

• Wen have . We chose  for NMC, and  for NKQ.d𝒳 = dΘ = 2 N = T = Δ−2 N = T = Δ−1

Yang, S., Zankin, V., Balandat, M., Scherer, S., Carlberg, K., Walton, N., & Law, K. J. H. (2024). Accelerating look-ahead in Bayesian 
optimization: Multilevel Monte Carlo is all you need. International Conference on Machine Learning, 56722–56748.

• Problem: Repeatedly computing and optimising acquisition function for 2-step look-ahead 
Bayesian optimisation. This requires compute a very large number of nested expectations. 



Look-ahead Bayesian optimisation

• Wen have . We chose  for NMC, and  for NKQ.d𝒳 = dΘ = 2 N = T = Δ−2 N = T = Δ−1

Yang, S., Zankin, V., Balandat, M., Scherer, S., Carlberg, K., Walton, N., & Law, K. J. H. (2024). Accelerating look-ahead in Bayesian 
optimization: Multilevel Monte Carlo is all you need. International Conference on Machine Learning, 56722–56748.

• Problem: Repeatedly computing and optimising acquisition function for 2-step look-ahead 
Bayesian optimisation. This requires compute a very large number of nested expectations. 

• Cubic cost for NKQ only occurs once since the matrix inverses can be re-used (through 
change of variable trick).
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• In-depth study of multilevel KQ approach?

Li, K., Giles, D., Karvonen, T., Guillas, S., & Briol, F.-X. (2023). Multilevel Bayesian quadrature. 
International Conference on Artificial Intelligence and Statistics (with oral presentation), 1845–1868.



Any Questions?

Chen, Z., Naslidnyk, M., & Briol, F.-X. (2025). Nested expectations with kernel quadrature. arXiv:2502.18284.


