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Contributed Discussion

Harrison Zhu∗, Xing Liu†, Alberto Caron‡, Ioanna Manolopoulou§,
Seth Flaxman¶, and François-Xavier Briol‖

In the Neyman-Rubin causal model, patient i is represented through a triplet (Xi, Zi, Yi),
where Xi denotes covariates, Zi denotes whether the patient received a treatment
(Zi = 1) or not (Zi = 0), and Yi represents the outcome (in particular Yi(1) is when
the patient received the treatment and Yi(0) if they did not). Given such data for
n patients, we would like to answer questions about the effect of the treatment on
the outcome variables. These questions can be answered by considering certain statis-
tics of interest (Hill, 2011). These include the (population) average treatment effect
(ATE), given by E[Y (1)−Y (0)], the sample average treatment effect (SATE), given by
1
n

∑n
i=1(Yi(1) − Yi(0)), the population average effect of the treatment on the treated

(PATT), given by E[Y (1)−Y (0)|Z = 1], and the sample average treatment effect of the
treatment on the treated (SATT), given by 1

n

∑
i:Zi=1(Yi(1)− Yi(0)).

An interesting point is that each of these quantities can be expressed as an integral
of the conditional average treatment effect (CATE), τ(x) = E[Y (1)−Y (0)|X = x], over
some distribution on covariates. As discussed in Hahn et al. (2020), this can be estimated
by integrating a model τ̂ of τ , such as a Bayesian posterior mean. This remark, although
seemingly trivial, is particularly interesting since it opens up connections with the field
of probabilistic numerics and especially Bayesian probabilistic numerical integration
(BPNI) (Diaconis, 1988; O’Hagan, 1991; Rasmussen and Ghahramani, 2002; Briol et al.,
2019).

In BPNI, the goal is to tackle challenging problems in numerical analysis, such as
the computation of an intractable integral, using tools from Bayesian nonparametrics.
The motivation is that the Bayesian framework can be used to quantify uncertainty over
the value of the integral. This is done through three steps: (i) a prior is placed over the
integrand, (ii) this prior is conditioned on values of the function to obtain a posterior on
the integrand, (iii) this posterior on the integrand implies a (one-dimensional) posterior
on the value of the integral. Different prior choices allow us to encode properties of
the integrand, such as smoothness or periodicity, in a straightforward manner, leading
to algorithms which respect these properties. The most common model is a Gaussian
process (GP); although more recent work also considers alternatives such as Bayesian
additive regression trees (BART) (Zhu et al., 2020) or multi-output Gaussian processes
(Xi et al., 2018; Gessner et al., 2019).

∗Department of Mathematics, Imperial College London, hbz15@ic.ac.uk
†Department of Pure Mathematics and Mathematical Statistics, University of Cambridge,

liuxing971015@outlook.com
‡Department of Statistical Science, University College London, alberto.caron.19@ucl.ac.uk
§Department of Statistical Science, University College London, i.manolopoulou@ucl.ac.uk
¶Department of Mathematics, Imperial College London, s.flaxman@imperial.ac.uk
‖Department of Statistical Science, University College London and The Alan Turing Institute,

f.briol@ucl.ac.uk



56 Contributed Discussion

Figure 1: Estimates of the ATE for active learning and random sampling.

We can hence see the computation of ATE, PATT, SATE and SATT through in-
tegrals of the CATE as applications of BPNI to causal inference. This leads to several
remarks:

1. There are a number of consistency results for BPNI methods, including refined
convergence rates in a variety of scenarios depending on the model used, the
domain of integration, the data generating process and the smoothness of the
integrand. These could provide strong theoretical guarantees for the estimation
of the ATE, SATE, SATT and PATT in a wide variety of settings; see Briol
et al. (2019); Kanagawa and Hennig (2019); Kanagawa et al. (2020); Wynne et al.
(2020).

2. Active Learning: The field of BPNI has derived a variety of experimental design
schemes targeting directly the efficient approximation of integrals (rather than
approximation of functions); see Osborne et al. (2012); Gunter et al. (2014); Briol
et al. (2015); Jiang et al. (2019) in the case of Gaussian process models, and Zhu
et al. (2020) for BART. Again, these could lead to more efficient estimates of the
quantities of interest in causal inference.

To highlight the potential benefits of active learning schemes for causal inference
with GPs and BART, we considered the synthetic example in Section 6.1 of Hahn et al.
(2020) with homogeneous treatment effects and linear prognostic function.1 We assume

1The code is available at https://github.com/ImperialCollegeLondon/BART-Int.
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the model Yi = f(Xi, Zi) + εi, where εi ∼ N(0, 0.12) and the covariates Xi are i.i.d.
with a known distribution Π. We consider the computation of the ATE estimated as
Πm[f̂(X, 1)− f̂(X, 0)], where f̂ is the fitted posterior of the Bayesian model (e.g. BART
or GP) on f , and Πm is an empirical distribution formed by samples {x̃i}mi=1 represen-
tative of Π (and potentially different from the observed covariates {xi}ni=1).

For the active learning algorithms (see Zhu et al., 2020 for full details), we use a
candidate set of size m = 2000, then begin with nini = 50 initial random design points
and acquire nseq = 200 additional points. We use a sequential design with new point
selected one at a time through the following objective: At iteration n, we select xn+1 and
zn+1 as follows argmaxc=(x,z)V[f(x, z)π(x)e(z)|{(xi, zi, yi)}ni=1], where π is the density
of Π and e is the propensity function. We can see that active learning helped both
models to obtain improved estimates of the true value of ATE (ATE = 3).

Overall, we conclude that the fields of causal inference and BPNI could benefit from
further interactions. In this note, we pointed out how recent advances in BPNI could
lead to further practical and theoretical advances in causal inference (including through
a small synthetic example), but it is also clear that applications in causal inference could
provide motivation for the development of novel BPNI algorithms.
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