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Simulation-based inference (SBI)

xi = Gθ(ui)

Deterministic map 
(generator)

 
(randomness)
ui ∼ 𝕌

• A simulator  such that a draw from  can be obtained as:(𝕌, Gθ) ℙθ

Simulated  
data

Simulation-based inference: Inference using simulated data to 
replace evaluations of the likelihood!



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤

i.e.  contains 
both  and 

θ
μ Σ



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤

Inverse CDF of 
standard Gaussian!



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤

Cholesky!



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤



A trivial simulator for Gaussians
•  , ℙθ := 𝒩(μ, Σ) ui = (ui1, ui2)⊤, ui1, ui2 ∼ Unif(0,1) Gθ(u) = μ + L (

Φ−1(ui,1)

Φ−1(ui2))
Σ = LL⊤



Some slightly less trivial simulators….
• We can create all sorts of more complex simulators 

by increasing the complexity of the  map.Gθ



Some slightly less trivial simulators….
• We can create all sorts of more complex simulators 

by increasing the complexity of the  map.Gθ

• Lots of classical tools from the Monte Carlo 
community can be used for this:
Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag.



Some slightly less trivial simulators….
• We can create all sorts of more complex simulators 

by increasing the complexity of the  map.Gθ

• Lots of classical tools from the Monte Carlo 
community can be used for this:
Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag.

• SBI often works with simulators carefully crafted by 
scientists and engineers. These simulators are 
hence implementations of complex mathematical 
models of the phenomena being studied.
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Simulators in cosmology

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural 
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

‘Gower Street simulation’ 
run by Niall and colleagues 
at UCL Physics

Data collected through the Dark 
energy survey camera

The Dark energy 
survey camera!

(   scientists 
from 25 institutions 
in 7 countries)

+ ≈ 400
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https://simulation-based-
inference.org/ 

Epidemiology

Genomics

https://simulation-based-inference.org/
https://simulation-based-inference.org/


Clarifying terminology

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/ 

• Are diffusion models simulators?

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/


Clarifying terminology

Yes, you can think of this process as 
defining a simulator!

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/ 

• Are diffusion models simulators?

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/


Clarifying terminology

Yes, you can think of this process as 
defining a simulator!

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/ 

• Are diffusion models simulators?

• Does this mean we are getting yet another course on diffusion models?

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/


Clarifying terminology

No! In SBI, we typically have scientifically meaningful simulators where the parameter  can 
be interpreted. We therefore really care about estimating it and providing uncertainty estimates!

θ

Yes, you can think of this process as 
defining a simulator!

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/ 

• Are diffusion models simulators?

• Does this mean we are getting yet another course on diffusion models?

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/


Any Questions?



What is coming up
• Basic methods:

Approximate Bayesian 
Computation

Neural simulation-
based inference

Minimum distance 
estimation



What is coming up
• Basic methods:

Approximate Bayesian 
Computation

Neural simulation-
based inference

Minimum distance 
estimation

• Discussion of the main challenges in SBI.



What is coming up
• Basic methods:

Approximate Bayesian 
Computation

Neural simulation-
based inference

Minimum distance 
estimation

Bharti, A., Huang, D., Kaski, S., & Briol, F.-X. (2025). Cost-aware simulation-based inference. International Conference on 
Artificial Intelligence and Statistics, 28–36.

Dellaporta, C., Knoblauch, J., Damoulas, T. & Briol, F-X (2022). Robust Bayesian inference for simulator-based models 
via the MMD posterior bootstrap. AISTATS, 943-970. Best paper award.

• Some illustrations of recent advances:
Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X (2025). Multilevel neural simulation-based inference. arXiv:2506.06087 (to 
appear at NeurIPS?).

• Discussion of the main challenges in SBI.



Minimum Distance Estimation 



Minimum Distance Estimation 

(i.e. how to be a frequentist in SBI…)
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Note: For more complex models, we may 
also want to compare higher moments…
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McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical 
integration. Econometrica, 57(5), 995–1026.

• Problem: We work with simulators, and so we can’t necessarily compute the mean!

𝔼X∼ℙθ
[X] ≈

1
n

n

∑
i=1

yi

???
???

???

• Method of simulated moments: We repeat the method of moments, but we 
simulate at each iteration!
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1) Simulate x1, …, xn ∼ ℙθt

For ,t ∈ {1,…, T}

Fix grid .θ1, …, θT ∈ Θ

• In practice, this is implemented much more efficiently than by grid search…

Return parameter value where moments match most. 
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• Can pick our favourite discrepancy/divergence/distance!
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This will typically make things intractable unless  is picked carefully!ℱ

(4) It should be robust/emphasise important differences for inference?
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• Once we have  samples from  and , this turns into an optimal transport which 

can be solved in  in  and  for .
n ℙθ ℚ

O(n log n) d = 1 O(n3) d > 1

Bernton, E., Jacob, P. E., Gerber, M., & Robert, C. P. (2017). Inference in generative models using the Wasserstein distance. Information and 
Inference: A Journal of the IMA, 8(4), 657–676.

Bassetti, F., Bodini, A., & Regazzini, E. (2006). On minimum Kantorovich distance estimators. Statistics & Probability Letters, 76, 1298–1302.

̂θn := arg min
θ∈Θ

W(ℙθ, Qn)

• This leads to the following estimator, usually approximated with stochastic 
optimisation:



The maximum mean discrepancy
MMD(ℙ, ℚ) := sup

f∈ℱMMD
𝔼X∼ℙ[ f(X)] − 𝔼X∼ℚ[ f(X)] ℱMMD := {f : 𝒳 → ℝ : ∥f∥ℋk

≤ 1}



The maximum mean discrepancy
MMD(ℙ, ℚ) := sup

f∈ℱMMD
𝔼X∼ℙ[ f(X)] − 𝔼X∼ℚ[ f(X)] ℱMMD := {f : 𝒳 → ℝ : ∥f∥ℋk

≤ 1}

= ∥μℙ − μℚ∥ℋk
μℙ(x) = ∫𝒳

k(x, x′￼)ℙ(dx′￼)



The maximum mean discrepancy
MMD(ℙ, ℚ) := sup

f∈ℱMMD
𝔼X∼ℙ[ f(X)] − 𝔼X∼ℚ[ f(X)] ℱMMD := {f : 𝒳 → ℝ : ∥f∥ℋk

≤ 1}

𝒳

ℙ ℚ
μℙ(x)

μℚ(x)

= ∥μℙ − μℚ∥ℋk
μℙ(x) = ∫𝒳

k(x, x′￼)ℙ(dx′￼)

Credit for figure:



The maximum mean discrepancy
MMD(ℙ, ℚ) := sup

f∈ℱMMD
𝔼X∼ℙ[ f(X)] − 𝔼X∼ℚ[ f(X)] ℱMMD := {f : 𝒳 → ℝ : ∥f∥ℋk

≤ 1}

𝒳

ℙ ℚ
μℙ(x)

μℚ(x)

= ∥μℙ − μℚ∥ℋk
μℙ(x) = ∫𝒳

k(x, x′￼)ℙ(dx′￼)

Credit for figure:

(1) Divergence 



The maximum mean discrepancy
MMD(ℙ, ℚ) := sup

f∈ℱMMD
𝔼X∼ℙ[ f(X)] − 𝔼X∼ℚ[ f(X)] ℱMMD := {f : 𝒳 → ℝ : ∥f∥ℋk

≤ 1}

𝒳

ℙ ℚ
μℙ(x)

μℚ(x)

= ∥μℙ − μℚ∥ℋk
μℙ(x) = ∫𝒳

k(x, x′￼)ℙ(dx′￼)

Credit for figure:

(1) Divergence 

(2) Easy to estimate 



The maximum mean discrepancy
MMD(ℙ, ℚ) := sup

f∈ℱMMD
𝔼X∼ℙ[ f(X)] − 𝔼X∼ℚ[ f(X)] ℱMMD := {f : 𝒳 → ℝ : ∥f∥ℋk

≤ 1}

𝒳

ℙ ℚ
μℙ(x)

μℚ(x)

= ∥μℙ − μℚ∥ℋk
μℙ(x) = ∫𝒳

k(x, x′￼)ℙ(dx′￼)

Credit for figure:

(1) Divergence 

(2) Easy to estimate 

(3) Interpretable ˜



The maximum mean discrepancy
MMD(ℙ, ℚ) := sup

f∈ℱMMD
𝔼X∼ℙ[ f(X)] − 𝔼X∼ℚ[ f(X)] ℱMMD := {f : 𝒳 → ℝ : ∥f∥ℋk

≤ 1}

𝒳

ℙ ℚ
μℙ(x)

μℚ(x)

= ∥μℙ − μℚ∥ℋk
μℙ(x) = ∫𝒳

k(x, x′￼)ℙ(dx′￼)

Credit for figure:

(1) Divergence 

(2) Easy to estimate 

(3) Interpretable ˜(4) Robust



Minimum MMD estimators

MMD2(ℙ, ℚ) = ∫𝒳 ∫𝒳
k(x, y)ℙ(dx)ℙ(dy) − 2∫𝒳 ∫𝒳

k(x, y)ℙ(dx)ℚ(dy) + ∫𝒳 ∫𝒳
k(x, y)ℚ(dx)ℚ(dy)

• Thanks to the ‘reproducing property’, we get:



Minimum MMD estimators

MMD2(ℙ, ℚ) = ∫𝒳 ∫𝒳
k(x, y)ℙ(dx)ℙ(dy) − 2∫𝒳 ∫𝒳

k(x, y)ℙ(dx)ℚ(dy) + ∫𝒳 ∫𝒳
k(x, y)ℚ(dx)ℚ(dy)

• Thanks to the ‘reproducing property’, we get:

• A natural estimator from sample consists of approximating the integrals with Monte Carlo!



Minimum MMD estimators

Briol, F.-X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical inference for generative models with maximum mean discrepancy. 
arXiv:1906.05944.

Chérief-Abdellatif, B.-E., & Alquier, P. (2022). Finite sample properties of parametric MMD estimation: robustness to misspecification and 
dependence. Bernoulli, 28(1), 181–213.

MMD2(ℙ, ℚ) = ∫𝒳 ∫𝒳
k(x, y)ℙ(dx)ℙ(dy) − 2∫𝒳 ∫𝒳

k(x, y)ℙ(dx)ℚ(dy) + ∫𝒳 ∫𝒳
k(x, y)ℚ(dx)ℚ(dy)

• Thanks to the ‘reproducing property’, we get:

• This leads to: ̂θn := arg min
θ∈Θ

MMD2(ℙθ, Qn)

• A natural estimator from sample consists of approximating the integrals with Monte Carlo!



Any Questions?



Approximate Bayesian Computation 

(From now on we will mostly be Bayesian!)



Approximate Bayesian computation (ABC)

p(θ |y1, …, yn) ∝
n

∏
i=1

p(yi |θ)p(θ)
• Recall that we would like to approximate:

Marin, J.-M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22, 1167–1180.

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its Application, 6, 379–403.



Approximate Bayesian computation (ABC)
• Recall that we would like to approximate:

Marin, J.-M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22, 1167–1180.

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its Application, 6, 379–403.

p(θ |y1) ∝ p(y1 |θ)p(θ) (Only for notational 
simplicity)



Approximate Bayesian computation (ABC)
• Recall that we would like to approximate:

qABC(θ |y1) ∝ [∫𝒳
Kϵ(∥x1 − y1∥)p(x1 |θ)dx1] p(θ)

• Now suppose we have a ‘bump function’/'convolution kernel’ , then we can define:Kϵ

Marin, J.-M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22, 1167–1180.

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its Application, 6, 379–403.

p(θ |y1) ∝ p(y1 |θ)p(θ) (Only for notational 
simplicity)



Approximate Bayesian computation (ABC)
• Recall that we would like to approximate:

qABC(θ |y1) ∝ [∫𝒳
Kϵ(∥x1 − y1∥)p(x1 |θ)dx1] p(θ)

• Now suppose we have a ‘bump function’/'convolution kernel’ , then we can define:Kϵ

Marin, J.-M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22, 1167–1180.

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its Application, 6, 379–403.

p(θ |y1) ∝ p(y1 |θ)p(θ) (Only for notational 
simplicity)

Surrogate likelihood!



Approximate Bayesian computation (ABC)
• Recall that we would like to approximate:

qABC(θ |y1) ∝ [∫𝒳
Kϵ(∥x1 − y1∥)p(x1 |θ)dx1] p(θ)

• Now suppose we have a ‘bump function’/'convolution kernel’ , then we can define:Kϵ

Marin, J.-M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22, 1167–1180.

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its Application, 6, 379–403.

p(θ |y1) ∝ p(y1 |θ)p(θ) (Only for notational 
simplicity)



Approximate Bayesian computation (ABC)

p(θ |y1, …, yn) ∝
n

∏
i=1

p(yi |θ)p(θ)
• Recall that we would like to approximate:

• Now suppose we have a ‘bump function’/'convolution kernel’ , then we can define:Kϵ

Marin, J.-M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22, 1167–1180.

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its Application, 6, 379–403.

qABC(θ |y1, …, yn) ∝ ∫𝒳
…∫𝒳

Kϵ(∥x − y∥)
n

∏
i=1

p(xi |θ)p(θ)dx1…dxn



A simple ABC sampler
qABC(θ |y1, …, yn) ∝ ∫𝒳

…∫𝒳
Kϵ(∥x − y∥)

n

∏
i=1

p(xi |θ)p(θ)dx1…dxn



A simple ABC sampler

qABC(θ |y1, …, yn) ∝ ∫𝒳
…∫𝒳

Kϵ(∥x − y∥)
n

∏
i=1

p(xi |θ)p(θ)dx1…dxn

This is still intractable though!!



A simple ABC sampler

qABC(θ |y1, …, yn) ∝ ∫𝒳
…∫𝒳

Kϵ(∥x − y∥)
n

∏
i=1

p(xi |θ)p(θ)dx1…dxn

Sampler for the ABC posterior



A simple ABC sampler

qABC(θ |y1, …, yn) ∝ ∫𝒳
…∫𝒳

Kϵ(∥x − y∥)
n

∏
i=1

p(xi |θ)p(θ)dx1…dxn

Sampler for the ABC posterior

• For t ∈ {1,…, T} :



A simple ABC sampler

• Sample from the prior: .θt ∼ p(θ)

qABC(θ |y1, …, yn) ∝ ∫𝒳
…∫𝒳

Kϵ(∥x − y∥)
n

∏
i=1

p(xi |θ)p(θ)dx1…dxn

Sampler for the ABC posterior

• For t ∈ {1,…, T} :



A simple ABC sampler

• Sample from the prior: .θt ∼ p(θ)
• Simulate from the model: .xt1, …, xtn ∼ p(x |θt)

qABC(θ |y1, …, yn) ∝ ∫𝒳
…∫𝒳

Kϵ(∥x − y∥)
n

∏
i=1

p(xi |θ)p(θ)dx1…dxn

Sampler for the ABC posterior

• For t ∈ {1,…, T} :



A simple ABC sampler

• Sample from the prior: .θt ∼ p(θ)
• Simulate from the model: .xt1, …, xtn ∼ p(x |θt)

qABC(θ |y1, …, yn) ∝ ∫𝒳
…∫𝒳

Kϵ(∥x − y∥)
n

∏
i=1

p(xi |θ)p(θ)dx1…dxn

Sampler for the ABC posterior
We use the simulator: 
xti = Gθt

(ui), ui ∼ 𝕌
• For t ∈ {1,…, T} :



A simple ABC sampler

• Sample from the prior: .θt ∼ p(θ)
• Simulate from the model: .xt1, …, xtn ∼ p(x |θt)

qABC(θ |y1, …, yn) ∝ ∫𝒳
…∫𝒳

Kϵ(∥x − y∥)
n

∏
i=1

p(xi |θ)p(θ)dx1…dxn

Sampler for the ABC posterior
We use the simulator: 
xti = Gθt

(ui), ui ∼ 𝕌

• Weight  with probability proportional to .θt Kϵ(∥x − y∥)

• For t ∈ {1,…, T} :
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• Sample from the prior: .θt ∼ p(θ)
• Simulate from the model: .xt1, …, xtn ∼ p(x |θt)

qABC(θ |y1, …, yn) ∝ ∫𝒳
…∫𝒳

Kϵ(∥x − y∥)
n

∏
i=1

p(xi |θ)p(θ)dx1…dxn

Sampler for the ABC posterior
We use the simulator: 
xti = Gθt

(ui), ui ∼ 𝕌

• Weight  with probability proportional to .θt Kϵ(∥x − y∥)

• For t ∈ {1,…, T} :

This is just a simple example; there are many 
more advanced sampling methods (e.g. SMC)
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The impact of ϵ

Essentially ignored 
when  or ϵ = 0.1 ϵ = 1

Considered 
close if ϵ = 10

Observed x!



Discrepancies-based ABC

qABC(θ |y1, …, yn) ∝ ∫𝒳
…∫𝒳

Kϵ(∥x − y∥)
n

∏
i=1

p(xi |θ)p(θ)dx1…dxn

Kϵ (D ( 1
n

n

∑
i=1

δxi
,

1
n

n

∑
i=1

δyi)) = Kϵ (D ((ℙθ)n, ℚn))

Bernton, E., Jacob, P. E., Gerber, M., & Robert, C. P. (2019). Approximate Bayesian computation with the Wasserstein distance. JRSSB, 81(2), 235–269.

Park, M., Jitkrittum, W., & Sejdinovic, D. (2016). K2-ABC: Approximate bayesian computation with kernel embeddings. AISTATS, 51, 398–407.

Legramanti, S., Durante, D., & Alquier, P. (2025). Concentration and robustness of discrepancy-based ABC via Rademacher complexity. The Annals of 
Statistics, 53(1), 37–60.



Any Questions?



ML approaches to SBI 

We have now already covered the state-of-the-art until 2020-ish!



SBI with conditional density estimators

p(θ |y1, …, yn) ∝
n

∏
i=1

p(yi |θ)p(θ)

• I probably don’t need to convince you that machine learning methods are very good at 
emulation…. How can we use this for Bayes?

Zammit-mangion, A., Sainsbury-Dale, M., & Huser, R. (2025). Neural methods for amortized parameter inference. Annual Review of Statistics and Its 
Application, 12, 311–335.

Deistler, M., Boelts, J., Steinbach, P., Moss, G., Moreau, T., Gloeckler, M., Rodrigues, P. L. C., Linhart, J., Lappalainen, J. K., Miller, B. K., Gonçalves, P. J., 
Lueckmann, J.-M., Schröder, C., & Macke, J. H. (2025). Simulation-based inference: A practical guide. arXiv:2508.12939.
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SBI with conditional density estimators

p(θ |y1, …, yn) ∝
n

∏
i=1

p(yi |θ)p(θ)

• I probably don’t need to convince you that machine learning methods are very good at 
emulation…. How can we use this for Bayes?

• Both are conditional densities, and so we need to think about how we can use the ‘power’ of 
machine learning to emulate this type of quantity.

• We will start by emulating the likelihood; i.e. we want a flexible class: {qϕ(x |θ)}Φ∈Φ
Zammit-mangion, A., Sainsbury-Dale, M., & Huser, R. (2025). Neural methods for amortized parameter inference. Annual Review of Statistics and Its 

Application, 12, 311–335.
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Some simpler models…
{qϕ(x |θ)}Φ∈Φ

• We could start with the statistician’s favourite model:

qϕ(x |θ) = 𝒩(x |μ(ϕ; θ), Σ(ϕ; θ))

• We can increase the flexibility:

qϕ(x |θ) =
C

∑
c=1

wc(ϕ; θ)𝒩(x |μc(ϕ; θ), Σc(ϕ; θ))

Bishop, C. M. (1994). Mixture density networks (NCRG/94/004).
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Transformations and densities

= pv(T−1(x)) detJT−1(x)px(x) = pv(v) detJT(x)
−1

• Suppose  is invertible and both  and  are differentiable. Then:T T T−1

x = T(v), v ∼ pv(v)

• Consider some base distribution  and some transformation  such that pv T

• How do we design  if we want the density model to be very flexible?T

Use neural networks!!
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Tϕ = TK
ϕ ∘ … ∘ T2

ϕ ∘ T1
ϕ

• Note that we can compose such maps and keep their desirable properties:

qϕ(x) = pv(v) detJTϕ
(x)

−1

Kobyzev, I., Prince, S. J. D., & Brubaker, M. A. (2021). Normalizing flows: An introduction and review of current methods. IEEE 
TPAMI, 43(11), 3964–3979.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing flows for probabilistic 
modeling and inference. JMLR, 22, 1–64.
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Normalising flows (I)
• Note that we can compose such maps and keep their desirable properties:

Kobyzev, I., Prince, S. J. D., & Brubaker, M. A. (2021). Normalizing flows: An introduction and review of current methods. IEEE 
TPAMI, 43(11), 3964–3979.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing flows for probabilistic 
modeling and inference. JMLR, 22, 1–64.

• We end up with a normalising flow:

qϕ(x |θ) = pv(v) detJTϕ,θ
(x)

−1

Tϕ,θ = TK
ϕ,θ ∘ … ∘ T2

ϕ,θ ∘ T1
ϕ,θ

Straightforward to create 
conditional density!
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Normalising flows (II)

qϕ(x |θ) = pv(v) detJTϕ,θ
(x)

−1

Tϕ,θ = TK
ϕ,θ ∘ … ∘ T2

ϕ,θ ∘ T1
ϕ,θ

•  are selected to make  tractable, and for 

 to be computed efficiently.

T1
ϕ,θ, …, TK

ϕ,θ qϕ(x |θ)
detJTϕ,θ

(x)

• We typically train the network (i.e. find a good ) by minimising the 
forward KL divergence.

ϕ

• Terminology: Are normalising flows simulators?

They can be, but (similarly to diffusion models) they do not typically 
encode any science, they are just constructed to be very flexible models!



Normalising flows (III)
pv(v) qϕ(x)

Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). 
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.
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Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.
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Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). 
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.



Normalising flows (III)

T1
ϕ T2

ϕ T3
ϕ T4

ϕ

pv(v) qϕ(x)

Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). 
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.

The composition of relatively simple transformations can give fairly complex maps!



Neural likelihood estimation (NLE)
• Step 1: train  to approximate the likelihood using samples from the 

prior ( ) and simulator ( ):
qϕ(x |θ)

θ1, …, θn ∼ p(θ) xi ∼ p( ⋅ |θi)

̂ϕn := arg min
ϕ∈Φ

ℓNLE(ϕ), ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼p(⋅|θ)[log qϕ(x |θ)]]

Papamakarios, G., Sterratt, D. C., & Murray, I. (2019). Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows. 
AISTATS, 837–848.
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• Step 1: train  to approximate the likelihood using samples from the 

prior ( ) and simulator ( ):
qϕ(x |θ)

θ1, …, θn ∼ p(θ) xi ∼ p( ⋅ |θi)

̂ϕn := arg min
ϕ∈Φ

ℓNLE(ϕ), ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼p(⋅|θ)[log qϕ(x |θ)]]

• Step 2: Approximate posterior (MCMC, VI) constructed with surrogate 
likelihood!

pNLE(θ |y1, …, yn) ∝
n

∏
i=1

q ̂ϕn
(yi |θ)p(θ)

Papamakarios, G., Sterratt, D. C., & Murray, I. (2019). Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows. 
AISTATS, 837–848.
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Amortisation for NLE

pNLE(θ |y1, …, yn) ∝
n

∏
i=1

q ̂ϕn
(yi |θ)p(θ)

• Recall the NLE posterior:

• What if we get some new observations ?ỹ1, …, ỹn

We already have an emulator of the likelihood, so we just need to use it!

pNLE(θ | ỹ1, …, ỹn) ∝
n

∏
i=1

q ̂ϕn
(ỹi |θ)p(θ)

We still need to re-run MCMC/VI though… We are partially amortised.



Neural posterior estimation (NPE)
• Step 1: train  to approximate the posterior using samples from the 

prior ( ) and simulator ( ):
qϕ(θ |x)

θ1, …, θn ∼ p(θ) xi ∼ p( ⋅ |θi)

̂ϕn := arg min
ϕ∈Φ

ℓNPE(ϕ), ℓNPE(ϕ) = −
1
n

n

∑
i=1

log qϕ(θi |xi) ≈ − 𝔼θ∼p(θ)[𝔼x∼p(⋅|θ)[log qϕ(θ |x)]]

Papamakarios, G., & Murray, I. (2016). Fast e-free inference of simulation models with Bayesian conditional density estimation. NeurIPS, 1036–1044.

Lueckmann, J. M., Gonçalves, P. J., Bassetto, G., Öcal, K., Nonnenmacher, M., & Macke, J. H. (2017). Flexible statistical inference for mechanistic 
models of neural dynamics. NeurIPS, 1290–1300.

Greenberg, D. S., Nonnenmacher, M., & Macke, J. H. (2019). Automatic posterior transformation for likelihood-free inference. ICML, 4288–4304.



Neural posterior estimation (NPE)
• Step 1: train  to approximate the posterior using samples from the 

prior ( ) and simulator ( ):
qϕ(θ |x)

θ1, …, θn ∼ p(θ) xi ∼ p( ⋅ |θi)

̂ϕn := arg min
ϕ∈Φ

ℓNPE(ϕ), ℓNPE(ϕ) = −
1
n

n

∑
i=1

log qϕ(θi |xi) ≈ − 𝔼θ∼p(θ)[𝔼x∼p(⋅|θ)[log qϕ(θ |x)]]

• Step 2: Condition on the observed data:

pNPE(θ |y1, …, yn) = q ̂ϕn
(θ |y1, …, yn)

Papamakarios, G., & Murray, I. (2016). Fast e-free inference of simulation models with Bayesian conditional density estimation. NeurIPS, 1036–1044.

Lueckmann, J. M., Gonçalves, P. J., Bassetto, G., Öcal, K., Nonnenmacher, M., & Macke, J. H. (2017). Flexible statistical inference for mechanistic 
models of neural dynamics. NeurIPS, 1290–1300.

Greenberg, D. S., Nonnenmacher, M., & Macke, J. H. (2019). Automatic posterior transformation for likelihood-free inference. ICML, 4288–4304.



Amortisation of NPE
pNPE(θ |y1, …, yn) = q ̂ϕn

(θ |y1, …, yn)



Amortisation of NPE
pNPE(θ |y1, …, yn) = q ̂ϕn

(θ |y1, …, yn)

• What if we get some new observations ?ỹ1, …, ỹn
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Amortisation of NPE
pNPE(θ |y1, …, yn) = q ̂ϕn

(θ |y1, …, yn)

• What if we get some new observations ?ỹ1, …, ỹn

pNPE(θ | ỹ1, …, ỹn) = q ̂ϕn
(θ | ỹ1, …, ỹn)

• We have a direct handle on the new posterior; no need for MCMC/VI!

We are fully amortised.



Any Questions?



Challenges with existing SBI methods 



Challenge 1: Expensive simulators

Li, K., Giles, D., Karvonen, T., Guillas, S., & Briol, F.-X. (2023). 
Multilevel Bayesian quadrature. AISTATS, 1845–1868.

Example 1:

 hours per sim on laptop≈ 2
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Kirby, A., Briol, F.-X., Dunstan, T. D., & Nishino, T. (2023). Data-
driven modelling of turbine wake interactions and flow 
resistance in large wind farms. Wind Energy, 26(9), 875–1011.

 hours per sim on Met Office cluster≈ 100
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Example 1:
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Challenge 1: Expensive simulators

 hours per sim on Met Office cluster≈ 100

Example 2:Example 1:

 hours per sim on laptop≈ 2

Currently out of reach of modern SBI methods!
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Challenge 2: Model misspecification

G-and-k distribution

A tiny % of corrupted 
observations is enough 
to seriously affect the 
posterior.

Also leads to serious 
overconfidence!

Dellaporta, C., Knoblauch, J., Damoulas, T. & Briol, F-X (2022). Robust Bayesian inference for simulator-based models via the 
MMD posterior bootstrap. AISTATS, 943-970. Best paper award.

Kelly, R. P., Warne, D. J., Frazier, D. T., Nott, D. J., Gutmann, M. U., & Drovandi, C. (2025). Simulation-based Bayesian inference 
under model misspecification. arXiv:2503.12315.



Challenge 2: Model misspecification

G-and-k distribution

Currently very few robust methods with theoretical guarantees
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Challenge 4: High-dimensionality
• As with everything in stats/ML, the curse of 

dimensionality hurts us…. Computing distances or 
estimating densities is very tough!

• Remember the radio-propagation example. The 
dimension is typically around 800….

• We therefore end up working with summary 
statistics, either hand-crafted or learnt via a neural 
network (i.e. a ‘summary network’).

Bharti, A., Briol, F.-X., & Pedersen, T. (2021). A general method for calibrating stochastic radio channel 
models with kernels. IEEE Transactions on Antennas and Propagation, 70(6), 3986–4001.

Turns out 4 dimensional 
summary is practically 
sufficient here!

• Dimensionality of parameter space also a problem…
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Roadmap going ahead…

Background + challenges for SBI

Snapshot 1: 
Multi-fidelity methods for 
simulation-based inference 
(NeurIPS?, 2025)

Snapshot 2: 
Cost-aware methods for 
simulation-based inference 
(AISTATS, 2025)

Snapshot 3: 
Provably robust 
generalisation of Bayes for 
simulation-based inference 
(AISTATS Best Paper 
Award, 2022)



Any Questions?



Multilevel neural  
simulation-based inference 

Paper: Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X (2025). Multilevel neural simulation-based 
inference. arXiv:2506.06087. (to appear at NeurIPS?)

Code: https://github.com/yugahikida/multilevel-sbi 

https://github.com/yugahikida/multilevel-sbi
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Challenge for SBI

Simulators can be really computationally expensive!

This leads to a form of model misspecification by design!

• Most simulators used in SBI papers take only a few seconds (or less) to run. 

• Even if a simulator takes only a few minutes, we typically need thousands of simulations! 

• Simulators that take more time are currently out of reach of existing methods.



SBI for cosmology
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102

Villaescusa-Navarro, F., et al. (2021). The CAMELS project: Cosmology and astrophysics with machine-learning simulations. 
The Astrophysical Journal, 915(1), 71.

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural 
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.
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Villaescusa-Navarro, F., et al. (2021). The CAMELS project: Cosmology and astrophysics with machine-learning simulations. 
The Astrophysical Journal, 915(1), 71.

x more   
___expensive!!
≈ 100

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural 
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

Low-fidelity High-fidelity
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100

101
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Gravity-only N-
body simulations

Hydrodynamic 
simulations



Existing work on multi-fidelity in SBI
Many great works, but which are not specialised for neural-SBI:

Prescott, T. P., & Baker, R. E. (2020). Multifidelity approximate Bayesian computation. SIAM-ASA Journal on Uncertainty 
Quantification, 8(1), 114–138.

Jasra, A., Jo, S., Nott, D., Shoemaker, C., & Tempone, R. (2019). Multilevel Monte Carlo in approximate Bayesian computation. Stochastic 
Analysis and Applications, 37(3), 346–360.

Warne, D. J., Prescott, T. P., Baker, R. E., & Simpson, M. J. (2022). Multifidelity multilevel Monte Carlo to accelerate approximate 
Bayesian parameter inference for partially observed stochastic processes. Journal of Computational Physics, 469, 111543.
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Krouglova, A. N., Johnson, H. R., Confavreux, B., Deistler, M., & Gonçalves, P. J. (2025). Multifidelity simulation-based inference for 
computationally expensive simulators. arXiv:2502.08416.

One very recent attempt, but no theory and critical issue with hyper parameter selection:
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Analysis and Applications, 37(3), 346–360.

Warne, D. J., Prescott, T. P., Baker, R. E., & Simpson, M. J. (2022). Multifi




Existing work on multi-fidelity in SBI

Open problem: Rigorous and theoretically-grounded multi-fidelity for neural SBI!

Krouglova, A. N., Johnson, H. R., Confavreux, B., Deistler, M., & Gonçalves, P. J. (2025). Multifi


One very recent attempt, but no theory and critical issue with hyper parameter selection:

Many great works, but which are not specialised for neural-SBI:
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Jasra, A., Jo, S., Nott, D., Shoemaker, C., & Tempone, R. (2019). Multilevel Monte Carlo in approximate Bayesian computation. Stochastic 
Analysis and Applications, 37(3), 346–360.
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qϕ( ⋅ |θ)
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• Step 2: Do Bayes with approximate likelihood!

pNLE(θ |y1, …, yn) ∝
n

∏
i=1

q ̂ϕn
(yi |θ)p(θ)

Typically the most computationally 
expensive step!!
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∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼p(⋅|θ)[log qϕ(x |θ)]]

Can we do this better/cheaper?!

Yes, Multilevel Monte Carlo!

Jasra, A., Law, K., & Suciu, C. (2020). Advanced Multilevel Monte Carlo Methods. International Statistical Review, 88(3), 548–579.

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328.
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Suppose we have a  of increasing cost but also increasing accuracy. Then:f0, f1, …, fL = f

Very cheap - can 
take  large.n0

Very expensive - 
cannot take  large…. 
But low variance!
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Note that we presented this for NLE, but the same could work for NPE,  
other scoring rules, etc…!
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i )

Contradictory gradients! This is a problem when we are close to stationarity 
and   are small… The variance of the negative term is always large!!n0/n1

We fix the issue by normalising gradients so that these two terms have the 
same magnitude, and by projecting onto each other’s normal planes, which 
stabilises training.
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Can use this to determine 
optimal samples per level!
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n⋆
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Cbudget
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W1,4(π×𝕌) + 1, n⋆
l ∝

Cbudget

Cl + Cl+1
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W1,4(π×𝕌) + 1 .

Under some mild regularity conditions, we can find the optimal number of simulations per level 
assuming we have a maximum computational budget of :Cbudget

Note that these expressions contain a lot of quantities we may not know a-priori, but it is still 
indicative and helpful for selecting which simulations to run in practice.
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θ(u) = θ1 + θ2 1 + 0.8 ( 1 − exp(−θ3zl(u))

1 + exp(−θ3zl(u)) ) (1 + zl(u)2)log(θ4) zl(u),

z1(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

z0(u) := 2erf−1
low(2u − 1), erf−1

low(v) :=
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2 (u +
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u3) .

ML-NPE: Similar conclusion!
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Gl
θ(u) = θ1 + θ2 1 + 0.8 ( 1 − exp(−θ3zl(u))

1 + exp(−θ3zl(u)) ) (1 + zl(u)2)log(θ4) zl(u),
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Coverage slightly 
cautious
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ML-NLE benefits from low-fidelity 
simulations for first mode but also from 
high-fidelity simulations for second mode
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Any Questions?

Code: https://github.com/yugahikida/multilevel-sbi 

Paper: Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X (2025). Multilevel neural simulation-based 
inference. arXiv:2506.06087 (to appear at NeurIPS?).

https://github.com/yugahikida/multilevel-sbi


Cost-aware  
simulation-based inference 

Paper: Bharti, A., Huang, D., Kaski, S., & Briol, F.-X. (2025). Cost-aware simulation-based inference. 
International Conference on Artificial Intelligence and Statistics, 28–36.

Code: https://github.com/huangdaolang/cost-aware-sbi

https://github.com/huangdaolang/cost-aware-sbi
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Challenge for SBI

Simulators can be really computationally expensive!

We can adjust our sampling to sample less often 
from expensive parameterisations!

However we may not have an easy way to obtain low-fidelity simulators….



SBI for radio-propagation

Bharti, A., Briol, F-X., Pedersen, T. (2022). A general method for calibrating stochastic radio channel models with 
kernels. IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 3986-4001, June 2022.
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Bharti, A., Briol, F-X., Pedersen, T. (2022). A general method for calibrating stochastic radio channel models with 
kernels. IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 3986-4001, June 2022.
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Neural likelihood estimation (NLE)
• Step 1: train a conditional density model  to approximate the likelihood 

using samples from the prior ( ) and simulator ( ):
qϕ( ⋅ |θ)

θ1, …, θn ∼ p(θ) xi ∼ p( ⋅ |θi)

̂ϕn := arg min
ϕ∈Φ

ℓNLE(ϕ), ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼p(x|θ)[log qϕ(x |θ)]]
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• Step 1: train a conditional density model  to approximate the likelihood 

using samples from the prior ( ) and simulator ( ):
qϕ( ⋅ |θ)

θ1, …, θn ∼ p(θ) xi ∼ p( ⋅ |θi)

̂ϕn := arg min
ϕ∈Φ

ℓNLE(ϕ), ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼p(x|θ)[log qϕ(x |θ)]]

• Step 2: Do Bayes with approximate likelihood!

pNLE(θ |y1, …, yn) ∝
n

∏
i=1

q ̂ϕn
(yi |θ)p(θ)



A cheaper step 1?

ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼p(⋅|θ)[log qϕ(x |θ)]]

Can we do this better/cheaper?!



A cheaper step 1?

ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼p(⋅|θ)[log qϕ(x |θ)]]

Can we do this better/cheaper?!

Idea: • Let’s make use of the cost function .c : Θ → ℝ



A cheaper step 1?

ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼p(⋅|θ)[log qϕ(x |θ)]]

Can we do this better/cheaper?!

Idea: • Let’s make use of the cost function .c : Θ → ℝ
• We can try to sample less often in expensive regions …… 

but we still want to target the right objective.
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Importance sampling

μ = ∫Θ
f(θ)π(θ)dθ = ∫Θ

f(θ)
π(θ)
π̃(θ)

π̃(θ)dθ

≈
N

∑
i=1

w(θi)f(θi) θ1, …, θN ∼ π̃

wIS(θi) =
1
N

π(θi)
π̃(θi)

wSNIS(θi) =
wIS(θi)

∑N
j=1 wIS(θj)

Question: How do you pick the importance distribution?
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Cost-aware importance sampling

w(θ) =
1
N

π(θ)
π̃g(θ)

=
Bπ(θ)g(c(θ))

Nπ(θ)
∝ g(c(θ))

Through , we sample less 
often from expensive regions, 
so we need to up-weight 
expensive samples.

π̃g

wCa(θi) =
w(θi)

∑n
j=1 w(θj)

=
g(c(θi))

∑n
j=1 g(c(θj))

μ = ∫Θ
f(θ)π(θ)dθ ≈

n

∑
i=1

wCa(θi)f(θi) = ̂μCa
n

We use SNIS weights
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Putting it all together!
ℓNLE(ϕ) = −

1
n

n

∑
i=1

log qϕ(xi |θi), θi ∼ p(θ), xi ∼ p( ⋅ |θ)

ℓCa−NLE(ϕ) = −
1
n

n

∑
i=1

wCa(θi)log qϕ(xi |θi), θi ∼ p̃g(θ), xi ∼ p( ⋅ |θ)



Some reassuring results

Importance sampling can have 
 infinite variance!!!
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Some reassuring results

• Suppose that . Then:gmax = sup
θ∈Θ

g(c(θ)) < ∞

2. If  is square-integrable; i.e. , then  where:f ∫
Θ

f(θ)2π(θ)dθ < ∞ Var( ̂μCa) = σ2
Ca

gmin

gmax (σ2
MC −

μ2

n ) ≤ σ2
Ca ≤

gmax

gmin (σ2
MC −

μ2

n ) .

1. The weights are bounded: 
gmin

ngmax
≤ wCa(θi) ≤

gmax

ngmin
∀i ∈ {1,…, n},

3. The ESS is bounded: ( gmin

gmax )
2

≤ ESS ≤ ( gmax

gmin )
2

.
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A Gamma simulator
• ,  
• Simulator: Ahrens-Dieter acceptance-rejection method. 
• Method: ABC!

ℙθ = Gamma(θ,1)

If truth in expensive region, being 
‘too’ cost-aware won’t be great!

Being cost-aware tends to reduce your cost without a loss of accuracy!
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Some epidemiological models

0.0 0.2 0.4 0.6 0.8 1.0

µ1 : infection rate

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ 2
:r

ec
ov

er
y

ra
te

0.02

0.04

0.06

0.08

0.10

C
os

t[
se

co
nd

s]

Kypraios, T., Neal, P., and Prangle, D. (2017). A tutorial introduction to Bayesian inference for stochastic epidemic 
models using approximate Bayesian computation. Mathematical Biosciences, 287:42–53.

• We consider three different models with  and  parameters 
respectively, and use NPE.

1,2 3

: Still same accuracy but slightly better improvement!g(z) = z



Some epidemiological models

0.0 0.2 0.4 0.6 0.8 1.0

µ1 : infection rate

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ 2
:r

ec
ov

er
y

ra
te

0.02

0.04

0.06

0.08

0.10

C
os

t[
se

co
nd

s]

Kypraios, T., Neal, P., and Prangle, D. (2017). A tutorial introduction to Bayesian inference for stochastic epidemic 
models using approximate Bayesian computation. Mathematical Biosciences, 287:42–53.

• We consider three different models with  and  parameters 
respectively, and use NPE.

1,2 3

: Worse accuracy but much cheaperg(z) = z2
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Typically slight loss of accuracy but decent reduction in cost!
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Estimating the cost function
When the cost function is unknown, it can be estimated through simulations+regression. 
This is typically very cheap, and simulations can be re-used for inference!

Clearly not perfect, but still pretty good…Very accurate!



Computational Cost 
• Standard NLE: 15.6h,  
• Cost-aware NLE: 8.8h!!

Back to radio-propagation
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True q
NLE
Ca-NLE: g(z) = z2

Ca-NLE: multiple

Bharti, A., Briol, F-X., Pedersen, T. (2022). A general method for calibrating stochastic radio channel models with kernels. IEEE Transactions 
on Antennas and Propagation, vol. 70, no. 6, pp. 3986-4001, June 2022.
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Conclusion

• We proposed a novel importance sampling algorithm which focuses on 
down weighting sampling in regions with a large downstream cost.

• Although I presented this for NLE/NPE, we also have experiments for ABC 
and it could be applied to any other sampling-based SBI method.

• Need more computational statisticians engaging with neural-based 
simulation inference!



Any Questions?

Code: https://github.com/huangdaolang/cost-aware-sbi

Paper: Bharti, A., Huang, D., Kaski, S., & Briol, F.-X. (2025). Cost-aware simulation-based inference. 
International Conference on Artificial Intelligence and Statistics, 28–36.

https://github.com/huangdaolang/cost-aware-sbi


Robust Bayesian simulation-based 
inference

Paper: Dellaporta, C., Knoblauch, J., Damoulas, T. & Briol, F-X (2022). Robust Bayesian inference 
for simulator-based models via the MMD posterior bootstrap. AISTATS, 943-970. Best paper award.

Code: https://github.com/haritadell/npl_mmd_project  

https://github.com/haritadell/npl_mmd_project


Possible belief updates

Xn+i+1 ∼ p(Xn+i ∣ x1:n, Xn+1:n+i)
For i = 1,2,…

θ∞ = argminθ∈Θ 𝖫 ([x1:n, Xn+1:∞], θ)

Martingale posteriors & 
resampling-based approaches

Bayes’ 

Gibbs/Generalised/ 

πn(θ ∣ x1:n) =
p(x1:n ∣ θ) ⋅ π(θ)

∫ p(x1:n ∣ θ) ⋅ π(θ)dθ

Power/Fractional/ 

π(λ)
n (θ ∣ x1:n) =

p(x1:n ∣ θ)λ ⋅ π(θ)
∫ p(x1:n ∣ θ)λ ⋅ π(θ)dθ

q*n (θ) = arg min
q∈𝒬 {ℒ(q, x1:n) + D(q, π)}

π𝖫
n (θ ∣ x1:n) =

exp{−𝖫(x1:n, pθ)} ⋅ π(θ)
∫ exp{−𝖫(x1:n, pθ)} ⋅ π(θ)dθ

Optimisation-centric posteriors /  
Generalised Variational Inference

[See Fong, Holmes, & Walker (2023)]

Connections with Jeremias’ course
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Bayes’ 

Gibbs/Generalised/ 

πn(θ ∣ x1:n) =
p(x1:n ∣ θ) ⋅ π(θ)

∫ p(x1:n ∣ θ) ⋅ π(θ)dθ

Power/Fractional/ 

π(λ)
n (θ ∣ x1:n) =

p(x1:n ∣ θ)λ ⋅ π(θ)
∫ p(x1:n ∣ θ)λ ⋅ π(θ)dθ

q*n (θ) = arg min
q∈𝒬    

π𝖫
   

𝖫  
 𝖫  

Optimisation-centric posteriors /  
Generalised Variational Inference

[See Fong, Holmes, & Walker (2023)]

Connections with Jeremias’ course



Non-parametric Learning

Lyddon, S., Walker, S., & Holmes, C. (2018). Nonparametric learning from Bayesian models with randomized objective functions. NeurIPS, 2071–2081.
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Non-parametric Learning

Lyddon, S., Walker, S., & Holmes, C. (2018). Nonparametric learning from Bayesian models with randomized objective functions. NeurIPS, 2071–2081.

Fong, E., Lyddon, S., & Holmes, C. (2019). Scalable nonparametric sampling from multimodal posteriors with the posterior bootstrap. ICML, 3443–3464.

• Place a Dirichlet process  prior on DP(α; 𝔽 ) ℚ

• Condition this prior on the observed data  to get a posterior:y1, …, yn ∼ ℚ

DP(α′￼; 𝔽′￼) α′￼= α + n 𝔽′￼=
α

α + n
𝔽 +

n
α + n

ℚn

θ* := arg min
θ∈Θ

𝔼X∼ℚ[l(X, θ)]

• Map to parameter space

Rather than doing inference on  (which 
could be misspecified), we do inference on !

{ℙθ}θ∈Θ
ℚ

We still care about , so we 
map back to parameter space!

{ℙθ}θ∈Θ
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The posterior bootstrap (i.e. NPL in practice)
(1) Sample  from the DP posterior.ℚ(1), ℚ(2), …

ℚ(1)

ℚ(2)

ℚ(3)

DP(α′￼; 𝔽′￼)

pNPL(θ |y1…, yn)

(2) Compute the corresponding  using:θ(1), θ(2), …

θ( j) := arg min
θ∈Θ

𝔼X∼ℚ( j)[l(X, θ)]

Approximated with stick-
breaking procedure

Approximated with 
empirical loss
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The MMD posterior bootstrap
(1) Sample  using stick-breaking approximation of DP posterior.ℚ(1), ℚ(2), …

(2) Compute the corresponding  using:θ(1), θ(2), …

θ( j) := arg min
θ∈Θ

MMD2(ℙθ, ℚ( j)
n )

• The MMD with bounded kernel has been shown to be a robust distance

MMD2(ℙ, ℚ) = ∫𝒳 ∫𝒳
k(x, y)ℙ(dx)ℙ(dy) − 2∫𝒳 ∫𝒳

k(x, y)ℙ(dx)ℚ(dy) + ∫𝒳 ∫𝒳
k(x, y)ℚ(dx)ℚ(dy)

Bounded!



The MMD posterior bootstrap
(1) Sample  using stick-breaking approximation of DP posterior.ℚ(1), ℚ(2), …

(2) Compute the corresponding  using:θ(1), θ(2), …

θ( j) := arg min
θ∈Θ

MMD2(ℙθ, ℚ( j)
n )

Double robustness robust inference procedure and robust estimator!

• The MMD with bounded kernel has been shown to be a robust distance
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Example 1: Misspecified Gaussian

WABC: 
ABC with Wasserstein 
distance



Example 1: Misspecified Gaussian

NPL-WLL:

l(x, θ) = − β log p(x |θ)



Example 1: Misspecified Gaussian

‘Easy’ parameters; 
All do ok!

‘Hard’ parameters; 
WABC already 
struggles a bit

Well-specified case!
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struggles
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WABC impacted!



Example 1: Misspecified Gaussian

Misspecified case!

MMD posterior bootstrap 
barely impacted!!



Example 1: Misspecified Gaussian Time to run: 
NPL-MMD:  mins 
WABC:  hour

≈ 2
≈ 1

Misspecified case!
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Example 1 continued: Wasserstein NPL

• In principle, nothing stops us from using 
the Wasserstein instead of MMD.

• The results are still reasonable thanks to 
NPL framework, but much more diffuse

We really do gain from having both a robust 
inference framework AND a robust estimator…



Misspecified g-and-k distribution

Gθ(u) = θ1 + θ2 1 + 0.8 ( 1 − exp(−θ3z(u))
1 + exp(−θ3z(u)) ) (1 + z(u)2)log(θ4) z(u),

z(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),
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Gθ(u) = θ1 + θ2 1 + 0.8 ( 1 − exp(−θ3z(u))
1 + exp(−θ3z(u)) ) (1 + z(u)2)log(θ4) z(u),

z(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

Wasserstein ABC really struggles with outliers, but the 
MMD posterior bootstrap is not significantly impacted



Misspecified g-and-k distribution

Gθ(u) = θ1 + θ2 1 + 0.8 ( 1 − exp(−θ3z(u))
1 + exp(−θ3z(u)) ) (1 + z(u)2)log(θ4) z(u),

z(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

Time to run: 
NPL-MMD:  sec 
WABC:  sec

≈ 30
≈ 100
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(ℙθ)n =
1
n

n

∑
i=1

δxi
, xi = Gθ(ui), ui ∼ Unif[0,1]

• So far we have used:

Niu, Z., Meier, J., & Briol, F.-X. (2023). Discrepancy-based inference for intractable generative models using quasi-Monte Carlo. 
Electronic Journal of Statistics, 17(1), 1411–1456.

Bharti, A., Naslidnyk, M., Key, O., Kaski, S., & Briol, F.-X. (2023). Optimally-weighted estimators of the maximum mean discrepancy for 
likelihood-free inference. International Conference on Machine Learning, 2289–2312.

• Can do better with: 

(ℙθ)w
n :=

n

∑
i=1

wi δx̃i
, x̃i = Gθ(ũi), ũi
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Non-equal weights Grids

Going beyond iid…

(ℙθ)n =
1
n

n

∑
i=1

δxi
, xi = Gθ(ui), ui ∼ Unif[0,1]

• So far we have used:

Niu, Z., Meier, J., & Briol, F.-X. (2023). Discrepancy-based inference for intractable generative models using quasi-Monte Carlo. 
Electronic Journal of Statistics, 17(1), 1411–1456.

Bharti, A., Naslidnyk, M., Key, O., Kaski, S., & Briol, F.-X. (2023). Optimally-weighted estimators of the maximum mean discrepancy for 
likelihood-free inference. International Conference on Machine Learning, 2289–2312.

• Can do better with: 

(ℙθ)w
n :=

n

∑
i=1

wi δx̃i
, x̃i = Gθ(ũi), ũi
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Hypothesis testing for  
simulator misspecification

Key, O., Gretton, A., Briol, F-X., & Fernandez, T. (2025). Composite goodness-of-fit tests with kernels. JMLR, 26(51), 1–60.

: Model/simulator is well-specified. 
: Model/simulator is misspecified.

H0
H1

Test statistic: Δn = inf
θ∈Θ

MMD2(ℙθ, ℚn)

% of rejects:

Toggle-switch model:

Hard to distinguishEasy to distinguish
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Looking ahead….

• None of the methods in this section are well-suited for amortisation…

• Existing methods are either 
provably robust or 
amortised, but not both…!

• Currently working on a 
novel gen-Bayes method to 
resolve this.



Any Questions?
Paper: Dellaporta, C., Knoblauch, J., Damoulas, T. & Briol, F-X (2022). Robust Bayesian inference 
for simulator-based models via the MMD posterior bootstrap. AISTATS, 943-970. Best paper award.

Code: https://github.com/haritadell/npl_mmd_project  

https://github.com/haritadell/npl_mmd_project


Summary of this course
• Basic methods:

Approximate Bayesian 
Computation

Neural simulation-
based inference

Minimum distance 
estimation

• Modern Challenges for SBI (expensive simulators, 
misspecification, calibration, high-dimensionality).

Bharti, A., Huang, D., Kaski, S., & Briol, F.-X. (2025). Cost-aware simulation-based inference. International Conference on 
Artificial Intelligence and Statistics, 28–36.

Dellaporta, C., Knoblauch, J., Damoulas, T. & Briol, F-X (2022). Robust Bayesian inference for simulator-based models 
via the MMD posterior bootstrap. AISTATS, 943-970. Best paper award.

• Some illustrations of recent advances:
Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X (2025). Multilevel neural simulation-based inference. arXiv:2506.06087 (to 
appear at NeurIPS?).
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What I haven’t covered…. but probably should have!

• Alternative methodology: indirect inference, synthetic 
likelihoods, doubly-intractable problems, etc…

• Advanced emulators: GANs, flow matching, diffusion models, etc… 

• Software: sbi, bayesflow, etc…

• Theory: asymptotics, robustness, theory for normalising flows, etc…
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• Where should we go next?
Need to provide rigour and strong theoretical guarantees so 
we can use these methods to do serious science…



Some personal take-aways

• Where should we go next?

• Where are the computational statisticians (including me)?!
They were sleeping, but are slowly waking  
up to neural-based methods! 

Need to provide rigour and strong theoretical guarantees so 
we can use these methods to do serious science…


