
Multilevel neural simulation-based inference

Prof. François-Xavier Briol
Department of Statistical Science
University College London
https://fxbriol.github.io/
https://fsml-ucl.github.io/

Ayush Bharti
(Aalto)

Niall Jeffrey
(UCL)

Yuga Hikida
(Aalto)

https://fxbriol.github.io/
https://fsml-ucl.github.io/

π(θ |y1, …, ym) ∝
m

∏
i=1

p(yi |θ)π(θ)

Simulation-based inference (SBI)
Bayesian inference:

π(θ |y1, …, ym) ∝
m

∏
i=1

p(yi |θ)π(θ)

Simulation-based inference (SBI)
Bayesian inference:

π(θ |y1, …, ym) ∝
m

∏
i=1

p(yi |θ)π(θ)

Simulation-based inference (SBI)
Bayesian inference:

xi = Gθ(ui)

Deterministic map
(generator)

(randomness)
ui ∼ 𝕌

π(θ |y1, …, ym) ∝
m

∏
i=1

p(yi |θ)π(θ)

Simulation-based inference (SBI)
Bayesian inference:

• Approximate Bayesian computation (ABC).

Two main approaches:

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its
Application, 6, 379–403.

xi = Gθ(ui)

Deterministic map
(generator)

(randomness)
ui ∼ 𝕌

π(θ |y1, …, ym) ∝
m

∏
i=1

p(yi |θ)π(θ)

Simulation-based inference (SBI)
Bayesian inference:

Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of
the National Academy of Sciences of the United States of America, 117(48).

• Neural-based simulation-based inference.

• Approximate Bayesian computation (ABC).

Two main approaches:

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its
Application, 6, 379–403.

xi = Gθ(ui)

Deterministic map
(generator)

(randomness)
ui ∼ 𝕌

Simulators in the sciences and beyond

Particle Physics (CERN)

Simulators in the sciences and beyond

Particle Physics (CERN)

Neuroscience

Simulators in the sciences and beyond

Particle Physics (CERN)

Neuroscience

Epidemiology

Simulators in the sciences and beyond

Particle Physics (CERN)

Neuroscience

Epidemiology

Genomics

Simulators in the sciences and beyond

Health monitoring (Apple)Particle Physics (CERN)

Neuroscience

Epidemiology

Genomics

Simulators in the sciences and beyond

Health monitoring (Apple)Particle Physics (CERN)

Neuroscience

https://simulation-based-
inference.org/

Epidemiology

Genomics

https://simulation-based-inference.org/
https://simulation-based-inference.org/

Challenge for SBI

Simulators can be really computationally expensive!

Challenge for SBI

Simulators can be really computationally expensive!

• Most simulators used in SBI papers take only a few seconds (or less) to run.

• Even if a simulator takes only a few minutes, we typically need thousands of simulations!

• Simulators that take more time are currently out of reach of existing methods.

Challenge for SBI

Simulators can be really computationally expensive!

Many large-scale scientific applications are still out of reach!

• Most simulators used in SBI papers take only a few seconds (or less) to run.

• Even if a simulator takes only a few minutes, we typically need thousands of simulations!

• Simulators that take more time are currently out of reach of existing methods.

Challenge for SBI

Simulators can be really computationally expensive!

Many large-scale scientific applications are still out of reach!

• Most simulators used in SBI papers take only a few seconds (or less) to run.

• Even if a simulator takes only a few minutes, we typically need thousands of simulations!

• Simulators that take more time are currently out of reach of existing methods.

Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X. Multilevel neural simulation-based inference.
arXiv:2506.06087. to appear at NeurIPS 2025.

A motivating application

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

(scientists
from 25 institutions
in 7 countries)

+ ≈ 400

A motivating application

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

The Dark energy
survey camera!

(scientists
from 25 institutions
in 7 countries)

+ ≈ 400

A motivating application

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

The Dark energy
survey camera!

(scientists
from 25 institutions
in 7 countries)

+ ≈ 400

A motivating application

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

Data collected through the Dark
energy survey camera

The Dark energy
survey camera!

(scientists
from 25 institutions
in 7 countries)

+ ≈ 400

A motivating application

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

Data collected through the Dark
energy survey camera

The Dark energy
survey camera!

(scientists
from 25 institutions
in 7 countries)

+ ≈ 400

A motivating application

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

‘Gower Street simulation’
run by Niall and colleagues
at UCL Physics

Data collected through the Dark
energy survey camera

The Dark energy
survey camera!

(scientists
from 25 institutions
in 7 countries)

+ ≈ 400

SBI for cosmology

Low-fidelity High-fidelity

10°1

100

101

102

Villaescusa-Navarro, F., et al. (2021). The CAMELS project: Cosmology and astrophysics with machine-learning simulations.
The Astrophysical Journal, 915(1), 71.

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

Low-fidelity High-fidelity

10°1

100

101

102

SBI for cosmology

Low-fidelity High-fidelity

10°1

100

101

102

Villaescusa-Navarro, F., et al. (2021). The CAMELS project: Cosmology and astrophysics with machine-learning simulations.
The Astrophysical Journal, 915(1), 71.

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

Low-fidelity High-fidelity

10°1

100

101

102
Gravity-only N-
body simulations

Hydrodynamic
simulations

SBI for cosmology

Low-fidelity High-fidelity

10°1

100

101

102

Villaescusa-Navarro, F., et al. (2021). The CAMELS project: Cosmology and astrophysics with machine-learning simulations.
The Astrophysical Journal, 915(1), 71.

x more
___expensive!!
≈ 100

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.

Low-fidelity High-fidelity

10°1

100

101

102
Gravity-only N-
body simulations

Hydrodynamic
simulations

Existing work on multi-fidelity in SBI
Many great works, but which are not specialised for neural-SBI:

Prescott, T. P., & Baker, R. E. (2020). Multifidelity approximate Bayesian computation. SIAM-ASA Journal on Uncertainty
Quantification, 8(1), 114–138.

Jasra, A., Jo, S., Nott, D., Shoemaker, C., & Tempone, R. (2019). Multilevel Monte Carlo in approximate Bayesian computation. Stochastic
Analysis and Applications, 37(3), 346–360.

Warne, D. J., Prescott, T. P., Baker, R. E., & Simpson, M. J. (2022). Multifidelity multilevel Monte Carlo to accelerate approximate
Bayesian parameter inference for partially observed stochastic processes. Journal of Computational Physics, 469, 111543.

Existing work on multi-fidelity in SBI

Krouglova, A. N., Johnson, H. R., Confavreux, B., Deistler, M., & Gonçalves, P. J. (2025). Multifidelity simulation-based inference for
computationally expensive simulators. arXiv:2502.08416.

One very recent attempt, but no theory:

Many great works, but which are not specialised for neural-SBI:

Prescott, T. P., & Baker, R. E. (2020). Multifi
fi

Jasra, A., Jo, S., Nott, D., Shoemaker, C., & Tempone, R. (2019). Multilevel Monte Carlo in approximate Bayesian computation. Stochastic
Analysis and Applications, 37(3), 346–360.

Warne, D. J., Prescott, T. P., Baker, R. E., & Simpson, M. J. (2022). Multifi

Existing work on multi-fidelity in SBI

Open problem: Rigorous and theoretically-grounded multi-fidelity for neural SBI!

Krouglova, A. N., Johnson, H. R., Confavreux, B., Deistler, M., & Gonçalves, P. J. (2025). Multifi

One very recent attempt, but no theory:

Many great works, but which are not specialised for neural-SBI:

Prescott, T. P., & Baker, R. E. (2020). Multifi
fi

Jasra, A., Jo, S., Nott, D., Shoemaker, C., & Tempone, R. (2019). Multilevel Monte Carlo in approximate Bayesian computation. Stochastic
Analysis and Applications, 37(3), 346–360.

Warne, D. J., Prescott, T. P., Baker, R. E., & Simpson, M. J. (2022). Multifi

Neural SBI

• Can think of this as a two-step procedure:

Zammit-mangion, A., Sainsbury-Dale, M., & Huser, R. (2025). Neural methods for amortized parameter inference. Annual Review
of Statistics and Its Application, 12, 311–335.

Deistler, M., Boelts, J., Steinbach, P., Moss, G., Moreau, T., Gloeckler, M., Rodrigues, P. L. C., Linhart, J., Lappalainen, J. K.,
Miller, B. K., Gonçalves, P. J., Lueckmann, J.-M., Schröder, C., & Macke, J. H. (2025). Simulation-based inference: A practical
guide. arXiv:2508.12939.

Neural SBI

• Can think of this as a two-step procedure:

Step 1: Simulate synthetic data, then use this to fit a neural surrogate
for the likelihood/posterior (often a normalising flow).

Zammit-mangion, A., Sainsbury-Dale, M., & Huser, R. (2025). Neural methods for amortized parameter inference. Annual Review
of Statistics and Its Application, 12, 311–335.

Deistler, M., Boelts, J., Steinbach, P., Moss, G., Moreau, T., Gloeckler, M., Rodrigues, P. L. C., Linhart, J., Lappalainen, J. K.,
Miller, B. K., Gonçalves, P. J., Lueckmann, J.-M., Schröder, C., & Macke, J. H. (2025). Simulation-based inference: A practical
guide. arXiv:2508.12939.

Neural SBI

• Can think of this as a two-step procedure:

Step 1: Simulate synthetic data, then use this to fit a neural surrogate
for the likelihood/posterior (often a normalising flow).

Step 2: Use our surrogate to do inference with the observed data.

Zammit-mangion, A., Sainsbury-Dale, M., & Huser, R. (2025). Neural methods for amortized parameter inference. Annual Review
of Statistics and Its Application, 12, 311–335.

Deistler, M., Boelts, J., Steinbach, P., Moss, G., Moreau, T., Gloeckler, M., Rodrigues, P. L. C., Linhart, J., Lappalainen, J. K.,
Miller, B. K., Gonçalves, P. J., Lueckmann, J.-M., Schröder, C., & Macke, J. H. (2025). Simulation-based inference: A practical
guide. arXiv:2508.12939.

Intro to normalising flows:
transformations and densities

x = T(v), v ∼ pv(v)
• Consider some base distribution and some transformation such that pv T

Intro to normalising flows:
transformations and densities

px(x) = pv(v) detJT(x)
−1

• Suppose is invertible and both and are differentiable. Then:T T T−1

x = T(v), v ∼ pv(v)
• Consider some base distribution and some transformation such that pv T

Intro to normalising flows:
transformations and densities

px(x) = pv(v) detJT(x)
−1

• Suppose is invertible and both and are differentiable. Then:T T T−1

x = T(v), v ∼ pv(v)
• Consider some base distribution and some transformation such that pv T

JT(v) :=

∂T1

∂v1
… ∂T1

∂vd

⋮ ⋱ ⋮
∂Td

∂v1
…

∂Td

∂vd

Intro to normalising flows:
transformations and densities

= pv(T−1(x)) detJT−1(x)px(x) = pv(v) detJT(x)
−1

• Suppose is invertible and both and are differentiable. Then:T T T−1

x = T(v), v ∼ pv(v)
• Consider some base distribution and some transformation such that pv T

JT(v) :=

∂T1

∂v1
… ∂T1

∂vd

⋮ ⋱ ⋮
∂Td

∂v1
…

∂Td

∂vd

Intro to normalising flows:
transformations and densities

= pv(T−1(x)) detJT−1(x)px(x) = pv(v) detJT(x)
−1

• Suppose is invertible and both and are differentiable. Then:T T T−1

x = T(v), v ∼ pv(v)
• Consider some base distribution and some transformation such that pv T

• How do we design if we want the density model to be very flexible?T

Intro to normalising flows:
transformations and densities

= pv(T−1(x)) detJT−1(x)px(x) = pv(v) detJT(x)
−1

• Suppose is invertible and both and are differentiable. Then:T T T−1

x = T(v), v ∼ pv(v)
• Consider some base distribution and some transformation such that pv T

• How do we design if we want the density model to be very flexible?T

Use neural networks!!

Normalising flows

T = TK ∘ … ∘ T2 ∘ T1
• Note that we can compose such maps and keep their desirable properties:

Normalising flows

Tϕ = TK
ϕ ∘ … ∘ T2

ϕ ∘ T1
ϕ

• Note that we can compose such maps and keep their desirable properties:

We can also parametrise them!

Normalising flows

Tϕ = TK
ϕ ∘ … ∘ T2

ϕ ∘ T1
ϕ

• Note that we can compose such maps and keep their desirable properties:

qϕ(x) = pv(v) detJTϕ
(x)

−1

Kobyzev, I., Prince, S. J. D., & Brubaker, M. A. (2021). Normalizing flows: An introduction and review of current methods. IEEE
TPAMI, 43(11), 3964–3979.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing flows for probabilistic
modeling and inference. JMLR, 22, 1–64.

• We end up with a normalising flow:

Normalising flows
• Note that we can compose such maps and keep their desirable properties:

Kobyzev, I., Prince, S. J. D., & Brubaker, M. A. (2021). Normalizing flows: An introduction and review of current methods. IEEE
TPAMI, 43(11), 3964–3979.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing flows for probabilistic
modeling and inference. JMLR, 22, 1–64.

• We end up with a normalising flow:

qϕ(x |θ) = pv(v) detJTϕ,θ
(x)

−1

Tϕ,θ = TK
ϕ,θ ∘ … ∘ T2

ϕ,θ ∘ T1
ϕ,θ

Straightforward to create
conditional density!

Normalising flows
• Note that we can compose such maps and keep their desirable properties:

Kobyzev, I., Prince, S. J. D., & Brubaker, M. A. (2021). Normalizing flows: An introduction and review of current methods. IEEE
TPAMI, 43(11), 3964–3979.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing flows for probabilistic
modeling and inference. JMLR, 22, 1–64.

• We end up with a normalising flow:

qϕ(x |θ) = pv(v) detJTϕ,θ
(x)

−1

Tϕ,θ = TK
ϕ,θ ∘ … ∘ T2

ϕ,θ ∘ T1
ϕ,θ

 are selected to make tractableT1
ϕ,θ, …, TK

ϕ,θ qϕ(x |θ)

Illustration of normalising flows
pv(v) qϕ(x)

Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.

Illustration of normalising flows

T1
ϕ

pv(v) qϕ(x)

Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.

Illustration of normalising flows

T1
ϕ T2

ϕ

pv(v) qϕ(x)

Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.

Illustration of normalising flows

T1
ϕ T2

ϕ T3
ϕ T4

ϕ

pv(v) qϕ(x)

Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.

Illustration of normalising flows

T1
ϕ T2

ϕ T3
ϕ T4

ϕ

pv(v) qϕ(x)

Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.

The composition of relatively simple transformations can give fairly complex maps!

Neural likelihood estimation (NLE)
• Step 1: train to approximate the likelihood using samples from the

prior () and simulator ():
qϕ(⋅ |θ)

θ1, …, θn ∼ π xi ∼ p(⋅ |θi)

̂ϕn := arg min
ϕ

ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼ℙθ
[log qϕ(x |θ)]]

Neural likelihood estimation (NLE)
• Step 1: train to approximate the likelihood using samples from the

prior () and simulator ():
qϕ(⋅ |θ)

θ1, …, θn ∼ π xi ∼ p(⋅ |θi)

̂ϕn := arg min
ϕ

ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼ℙθ
[log qϕ(x |θ)]]

• Step 2: Do Bayes with approximate likelihood!

πNLE(θ |y1, …, ym) ∝
m

∏
i=1

q ̂ϕn
(yi |θ)π(θ)

Neural likelihood estimation (NLE)
• Step 1: train to approximate the likelihood using samples from the

prior () and simulator ():
qϕ(⋅ |θ)

θ1, …, θn ∼ π xi ∼ p(⋅ |θi)

̂ϕn := arg min
ϕ

ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼ℙθ
[log qϕ(x |θ)]]

• Step 2: Do Bayes with approximate likelihood!

πNLE(θ |y1, …, ym) ∝
m

∏
i=1

q ̂ϕn
(yi |θ)π(θ)

Typically the most computationally
expensive step!!

Neural likelihood estimation (NLE)
• Step 1: train to approximate the likelihood using samples from the

prior () and simulator ():
qϕ(⋅ |θ)

θ1, …, θn ∼ π xi ∼ p(⋅ |θi)

̂ϕn := arg min
ϕ

ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼ℙθ
[log qϕ(x |θ)]]

• Step 2: Do Bayes with approximate likelihood!

πNLE(θ |y1, …, ym) ∝
m

∏
i=1

q ̂ϕn
(yi |θ)π(θ)

Typically the most computationally
expensive step!!

• Can do similarly and approximate a posterior….. Neural posterior estimation (NPE).

A better step 1?

ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼ℙθ
[log qϕ(x |θ)]]

Can we do this better/cheaper?!

A better step 1?

ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼ℙθ
[log qϕ(x |θ)]]

Can we do this better/cheaper?!

Yes, Multilevel Monte Carlo!

Jasra, A., Law, K., & Suciu, C. (2020). Advanced Multilevel Monte Carlo Methods. International Statistical Review, 88(3), 548–579.

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328.

Multilevel Monte Carlo

𝔼z∼μ[f(z)]

Suppose we have a of increasing cost but also increasing accuracy. Then:f0, f1, …, fL = f

Multilevel Monte Carlo

𝔼z∼μ[f(z)] = 𝔼z∼μ[fL(z)]

Suppose we have a of increasing cost but also increasing accuracy. Then:f0, f1, …, fL = f

Multilevel Monte Carlo

𝔼z∼μ[f(z)] = 𝔼z∼μ [fL−1(z)] + 𝔼z∼μ [fL(z) − fL−1(z)]= 𝔼z∼μ[fL(z)]

Suppose we have a of increasing cost but also increasing accuracy. Then:f0, f1, …, fL = f

Multilevel Monte Carlo

𝔼z∼μ[f(z)] = 𝔼z∼μ [fL−1(z)] + 𝔼z∼μ [fL(z) − fL−1(z)]= 𝔼z∼μ[fL(z)]

Suppose we have a of increasing cost but also increasing accuracy. Then:f0, f1, …, fL = f

Multilevel Monte Carlo

𝔼z∼μ[f(z)]

= 𝔼z∼μ [f0(z)] +
L

∑
l=1

𝔼z∼μ [fl(z) − fl−1(z)]

= 𝔼z∼μ [fL−1(z)] + 𝔼z∼μ [fL(z) − fL−1(z)]= 𝔼z∼μ[fL(z)]

Suppose we have a of increasing cost but also increasing accuracy. Then:f0, f1, …, fL = f

Multilevel Monte Carlo

𝔼z∼μ[f(z)]

= 𝔼z∼μ [f0(z)] +
L

∑
l=1

𝔼z∼μ [fl(z) − fl−1(z)]

≈
1
n0

n0

∑
i=1

f0(z0
i) +

L

∑
l=1 (1

nl

nl

∑
i=1

(fl (zl
i) − fl−1 (zl

i)))

= 𝔼z∼μ [fL−1(z)] + 𝔼z∼μ [fL(z) − fL−1(z)]= 𝔼z∼μ[fL(z)]

Suppose we have a of increasing cost but also increasing accuracy. Then:f0, f1, …, fL = f

Multilevel Monte Carlo

𝔼z∼μ[f(z)]

= 𝔼z∼μ [f0(z)] +
L

∑
l=1

𝔼z∼μ [fl(z) − fl−1(z)]

≈
1
n0

n0

∑
i=1

f0(z0
i) +

L

∑
l=1 (1

nl

nl

∑
i=1

(fl (zl
i) − fl−1 (zl

i)))

= 𝔼z∼μ [fL−1(z)] + 𝔼z∼μ [fL(z) − fL−1(z)]= 𝔼z∼μ[fL(z)]

Suppose we have a of increasing cost but also increasing accuracy. Then:f0, f1, …, fL = f

Very cheap - can
take large.n0

Multilevel Monte Carlo

𝔼z∼μ[f(z)]

= 𝔼z∼μ [f0(z)] +
L

∑
l=1

𝔼z∼μ [fl(z) − fl−1(z)]

≈
1
n0

n0

∑
i=1

f0(z0
i) +

L

∑
l=1 (1

nl

nl

∑
i=1

(fl (zl
i) − fl−1 (zl

i)))

= 𝔼z∼μ [fL−1(z)] + 𝔼z∼μ [fL(z) − fL−1(z)]= 𝔼z∼μ[fL(z)]

Suppose we have a of increasing cost but also increasing accuracy. Then:f0, f1, …, fL = f

Very cheap - can
take large.n0

Very expensive -
cannot take large….
But low variance!

nl

Multilevel NLE
−𝔼θ∼π [𝔼x∼ℙθ [log qϕ(x |θ)]]

Multilevel NLE
−𝔼θ∼π [𝔼x∼ℙθ [log qϕ(x |θ)]] = 𝔼θ∼π,u∼𝕌 [−log qϕ (Gθ(u) |θ)]

Change of measure

Multilevel NLE
−𝔼θ∼π [𝔼x∼ℙθ [log qϕ(x |θ)]] = 𝔼θ∼π,u∼𝕌 [−log qϕ (Gθ(u) |θ)]

= 𝔼θ∼π,u∼𝕌 [−log qϕ (GL
θ (u) |θ)]

Multilevel NLE
−𝔼θ∼π [𝔼x∼ℙθ [log qϕ(x |θ)]] = 𝔼θ∼π,u∼𝕌 [−log qϕ (Gθ(u) |θ)]

= 𝔼θ∼π,u∼𝕌 [−log qϕ (GL
θ (u) |θ)]

= 𝔼θ∼π,u∼𝕌 [fL
ϕ(θ, u)]

This is now a joint expectation in the prior and ! 𝕌

Multilevel NLE
−𝔼θ∼π [𝔼x∼ℙθ [log qϕ(x |θ)]] = 𝔼θ∼π,u∼𝕌 [−log qϕ (Gθ(u) |θ)]

= 𝔼θ∼π,u∼𝕌 [−log qϕ (GL
θ (u) |θ)]

We can directly apply MLMC to it, where intermediate integrands are of the form:

f l
ϕ(θ, u) = − log qϕ (Gl

θ(u) |θ)

= 𝔼θ∼π,u∼𝕌 [fL
ϕ(θ, u)]

This is now a joint expectation in the prior and ! 𝕌

Multilevel NLE
−𝔼θ∼π [𝔼x∼ℙθ [log qϕ(x |θ)]] = 𝔼θ∼π,u∼𝕌 [−log qϕ (Gθ(u) |θ)]

= 𝔼θ∼π,u∼𝕌 [−log qϕ (GL
θ (u) |θ)]

We can directly apply MLMC to it, where intermediate integrands are of the form:

f l
ϕ(θ, u) = − log qϕ (Gl

θ(u) |θ)

= 𝔼θ∼π,u∼𝕌 [fL
ϕ(θ, u)]

This is now a joint expectation in the prior and ! 𝕌

Multilevel neural SBI

{θl
i , ul

i , Gl
θl

i
(ul

i), Gl−1
θl

i
(ul

i)} where θl
i ∼ π, ul

i ∼ 𝕌,
Our ‘data’ is therefore:

Multilevel neural SBI

{θl
i , ul

i , Gl
θl

i
(ul

i), Gl−1
θl

i
(ul

i)} where θl
i ∼ π, ul

i ∼ 𝕌,
Our ‘data’ is therefore:

Our objective for step 1 is:

ℓML-NLE(ϕ) :=
1
n0

n0

∑
i=1

f 0
ϕ(u0

i , θ0
i) +

L

∑
l=1

1
nl

nl

∑
i=1

(f l
ϕ(ul

i , θl
i) − f l−1

ϕ (ul
i , θl

i))

Multilevel neural SBI

{θl
i , ul

i , Gl
θl

i
(ul

i), Gl−1
θl

i
(ul

i)} where θl
i ∼ π, ul

i ∼ 𝕌,
Our ‘data’ is therefore:

Our objective for step 1 is:

ℓML-NLE(ϕ) :=
1
n0

n0

∑
i=1

f 0
ϕ(u0

i , θ0
i) +

L

∑
l=1

1
nl

nl

∑
i=1

(f l
ϕ(ul

i , θl
i) − f l−1

ϕ (ul
i , θl

i))

Seed-matched!

Multilevel neural SBI

{θl
i , ul

i , Gl
θl

i
(ul

i), Gl−1
θl

i
(ul

i)} where θl
i ∼ π, ul

i ∼ 𝕌,
Our ‘data’ is therefore:

Our objective for step 1 is:

ℓML-NLE(ϕ) :=
1
n0

n0

∑
i=1

f 0
ϕ(u0

i , θ0
i) +

L

∑
l=1

1
nl

nl

∑
i=1

(f l
ϕ(ul

i , θl
i) − f l−1

ϕ (ul
i , θl

i))

Seed-matched!

Var [f l
ϕ(ul

i , θl
i) − f l−1

ϕ (ul
i , θl

i)] = Var[f l
ϕ(ul

i , θl
i)] + Var[f l−1

ϕ (ul
i , θl

i)] − 2Cov [f l
ϕ(ul

i , θl
i), f l−1

ϕ (ul
i , θl

i)]

Multilevel neural SBI

{θl
i , ul

i , Gl
θl

i
(ul

i), Gl−1
θl

i
(ul

i)} where θl
i ∼ π, ul

i ∼ 𝕌,
Our ‘data’ is therefore:

Our objective for step 1 is:

ℓML-NLE(ϕ) :=
1
n0

n0

∑
i=1

f 0
ϕ(u0

i , θ0
i) +

L

∑
l=1

1
nl

nl

∑
i=1

(f l
ϕ(ul

i , θl
i) − f l−1

ϕ (ul
i , θl

i))

Seed-matched!

Var [f l
ϕ(ul

i , θl
i) − f l−1

ϕ (ul
i , θl

i)] = Var[f l
ϕ(ul

i , θl
i)] + Var[f l−1

ϕ (ul
i , θl

i)] − 2Cov [f l
ϕ(ul

i , θl
i), f l−1

ϕ (ul
i , θl

i)]
Large!!Small!!

Multilevel neural SBI

{θl
i , ul

i , Gl
θl

i
(ul

i), Gl−1
θl

i
(ul

i)} where θl
i ∼ π, ul

i ∼ 𝕌,
Our ‘data’ is therefore:

Our objective for step 1 is:

ℓML-NLE(ϕ) :=
1
n0

n0

∑
i=1

f 0
ϕ(u0

i , θ0
i) +

L

∑
l=1

1
nl

nl

∑
i=1

(f l
ϕ(ul

i , θl
i) − f l−1

ϕ (ul
i , θl

i))

Note that we presented this for NLE, but the same could work for NPE, NRE, etc…!

Var [f l
ϕ(ul

i , θl
i) − f l−1

ϕ (ul
i , θl

i)] = Var[f l
ϕ(ul

i , θl
i)] + Var[f l−1

ϕ (ul
i , θl

i)] − 2Cov [f l
ϕ(ul

i , θl
i), f l−1

ϕ (ul
i , θl

i)]

Challenges with training

ℓML-NLE(ϕ) :=
1
n0

n0

∑
i=1

f 0
ϕ(u0

i , θ0
i) +

1
n1

n1

∑
i=1

(f1
ϕ(u1

i , θ1
i) − f 0

ϕ(u1
i , θ1

i))

Challenges with training

ℓML-NLE(ϕ) :=
1
n0

n0

∑
i=1

f 0
ϕ(u0

i , θ0
i) +

1
n1

n1

∑
i=1

(f1
ϕ(u1

i , θ1
i) − f 0

ϕ(u1
i , θ1

i))
1
n0

n0

∑
i=1

∇f 0
ϕ(u0

i , θ0
i) ≈ 𝔼[∇f 0

ϕ] −𝔼[∇f 0
ϕ] ≈ −

1
n1

n1

∑
i=1

∇f 0
ϕ(u1

i , θ1
i)

Contradictory gradients! This is a problem when we are close to stationarity
and are small… The variance of the negative term is always large!!n0/n1

Challenges with training

ℓML-NLE(ϕ) :=
1
n0

n0

∑
i=1

f 0
ϕ(u0

i , θ0
i) +

1
n1

n1

∑
i=1

(f1
ϕ(u1

i , θ1
i) − f 0

ϕ(u1
i , θ1

i))
1
n0

n0

∑
i=1

∇f 0
ϕ(u0

i , θ0
i) ≈ 𝔼[∇f 0

ϕ] −𝔼[∇f 0
ϕ] ≈ −

1
n1

n1

∑
i=1

∇f 0
ϕ(u1

i , θ1
i)

Contradictory gradients! This is a problem when we are close to stationarity
and are small… The variance of the negative term is always large!!n0/n1

We fix the issue by normalising gradients so that these two terms have the
same magnitude, which stabilises training.

Bound on the variance

Var [ℓML-NLE(ϕ)] ≤
K0(ϕ)

n0
(∥G0∥4

W1,4(π×𝕌) + 1) +
L

∑
l=1

Kl(ϕ)
nl

∥Gl − Gl−1∥2
W1,4(π×𝕌)

Under some mild assumptions, we get:

Bound on the variance

Var [ℓML-NLE(ϕ)] ≤
K0(ϕ)

n0
(∥G0∥4

W1,4(π×𝕌) + 1) +
L

∑
l=1

Kl(ϕ)
nl

∥Gl − Gl−1∥2
W1,4(π×𝕌)

Under some mild assumptions, we get:

Small!Large!

Bound on the variance

Var [ℓML-NLE(ϕ)] ≤
K0(ϕ)

n0
(∥G0∥4

W1,4(π×𝕌) + 1) +
L

∑
l=1

Kl(ϕ)
nl

∥Gl − Gl−1∥2
W1,4(π×𝕌)

Under some mild assumptions, we get:

Complexity of low-fidelity
generator - large!

Complexity of other
integrands - small!Small!Large!

Bound on the variance

Var [ℓML-NLE(ϕ)] ≤
K0(ϕ)

n0
(∥G0∥4

W1,4(π×𝕌) + 1) +
L

∑
l=1

Kl(ϕ)
nl

∥Gl − Gl−1∥2
W1,4(π×𝕌)

Under some mild assumptions, we get:

Complexity of low-fidelity
generator - large!

Complexity of other
integrands - small!Small!Large!

1) We need the generators to have at least one derivative and four moments! ()W1,4(π × 𝕌)
Assumptions:

Bound on the variance

Var [ℓML-NLE(ϕ)] ≤
K0(ϕ)

n0
(∥G0∥4

W1,4(π×𝕌) + 1) +
L

∑
l=1

Kl(ϕ)
nl

∥Gl − Gl−1∥2
W1,4(π×𝕌)

Under some mild assumptions, we get:

Complexity of low-fidelity
generator - large!

Complexity of other
integrands - small!Small!Large!

1) We need the generators to have at least one derivative and four moments! ()W1,4(π × 𝕌)
Assumptions:

2) We need and to satisfy a Poincaré inequality (ok for Gaussian, uniform, etc..)π 𝕌

Bound on the variance

Var [ℓML-NLE(ϕ)] ≤
K0(ϕ)

n0
(∥G0∥4

W1,4(π×𝕌) + 1) +
L

∑
l=1

Kl(ϕ)
nl

∥Gl − Gl−1∥2
W1,4(π×𝕌)

Under some mild assumptions, we get:

Complexity of low-fidelity
generator - large!

Complexity of other
integrands - small!Small!Large!

1) We need the generators to have at least one derivative and four moments! ()W1,4(π × 𝕌)
Assumptions:

2) We need and to satisfy a Poincaré inequality (ok for Gaussian, uniform, etc..)π 𝕌
3) The surrogate has a Lipschitz gradient locally, and does not blow up too fast.qϕ(⋅ |θ)

Simulations per level

n⋆
0 ∝

Cbudget

C0
∥G0∥4

W1,4(π×𝕌) + 1, n⋆
l ∝

Cbudget

Cl + Cl+1
∥Gl − Gl−1∥2

W1,4(π×𝕌).

We can find the optimal number of simulations per level given a maximum
computational budget of :Cbudget

Simulations per level

n⋆
0 ∝

Cbudget

C0
∥G0∥4

W1,4(π×𝕌) + 1, n⋆
l ∝

Cbudget

Cl + Cl+1
∥Gl − Gl−1∥2

W1,4(π×𝕌).

We can find the optimal number of simulations per level given a maximum
computational budget of :Cbudget

The more ‘complex’ the generator
(or the difference in generators),
the more simulations we need.

Simulations per level

n⋆
0 ∝

Cbudget

C0
∥G0∥4

W1,4(π×𝕌) + 1, n⋆
l ∝

Cbudget

Cl + Cl+1
∥Gl − Gl−1∥2

W1,4(π×𝕌).

We can find the optimal number of simulations per level given a maximum
computational budget of :Cbudget

The larger the cost of
simulations at this level, the less
simulations we can afford.

Simulations per level

n⋆
0 ∝

Cbudget

C0
∥G0∥4

W1,4(π×𝕌) + 1, n⋆
l ∝

Cbudget

Cl + Cl+1
∥Gl − Gl−1∥2

W1,4(π×𝕌).

We can find the optimal number of simulations per level given a maximum
computational budget of :Cbudget

The larger the budget, the more
simulations we can afford.

Simulations per level

n⋆
0 ∝

Cbudget

C0
∥G0∥4

W1,4(π×𝕌) + 1, n⋆
l ∝

Cbudget

Cl + Cl+1
∥Gl − Gl−1∥2

W1,4(π×𝕌).

We can find the optimal number of simulations per level given a maximum
computational budget of :Cbudget

Note that these expressions contain a lot of quantities we may not know a-priori, but it is
still indicative and helpful for selecting which simulations to run in practice.

G-and-k distribution
n

=
10

4

n
=

30
0

n
1

=
50

n
1

=
10

0

n
1

=
30

0

10°1

100

K
LD

Prangle, D. (2020). gk: An R Package for the g-and-k and generalised g-and-h distributions. The R Journal, 12(1):7.

Gl
θ(u) = θ1 + θ2 1 + 0.8 (1 − exp(−θ3zl(u))

1 + exp(−θ3zl(u))) (1 + zl(u)2)log(θ4) zl(u),

z1(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

z0(u) := 2erf−1
low(2u − 1), erf−1

low(v) :=
π
2 (u +

π
12

u3) .

G-and-k distribution
n

=
10

4

n
=

30
0

n
1

=
50

n
1

=
10

0

n
1

=
30

0

10°1

100

K
LD

Prangle, D. (2020). gk: An R Package for the g-and-k and generalised g-and-h distributions. The R Journal, 12(1):7.

Gl
θ(u) = θ1 + θ2 1 + 0.8 (1 − exp(−θ3zl(u))

1 + exp(−θ3zl(u))) (1 + zl(u)2)log(θ4) zl(u),

z1(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

z0(u) := 2erf−1
low(2u − 1), erf−1

low(v) :=
π
2 (u +

π
12

u3) .

High-fidelity only:
too few simulations!

G-and-k distribution
n

=
10

4

n
=

30
0

n
1

=
50

n
1

=
10

0

n
1

=
30

0

10°1

100

K
LD

Prangle, D. (2020). gk: An R Package for the g-and-k and generalised g-and-h distributions. The R Journal, 12(1):7.

Gl
θ(u) = θ1 + θ2 1 + 0.8 (1 − exp(−θ3zl(u))

1 + exp(−θ3zl(u))) (1 + zl(u)2)log(θ4) zl(u),

z1(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

z0(u) := 2erf−1
low(2u − 1), erf−1

low(v) :=
π
2 (u +

π
12

u3) .

High-fidelity only:
too few simulations!

Low-fidelity only:
Many simulations,
but low quality!

G-and-k distribution
n

=
10

4

n
=

30
0

n
1

=
50

n
1

=
10

0

n
1

=
30

0

10°1

100

K
LD

Prangle, D. (2020). gk: An R Package for the g-and-k and generalised g-and-h distributions. The R Journal, 12(1):7.

Gl
θ(u) = θ1 + θ2 1 + 0.8 (1 − exp(−θ3zl(u))

1 + exp(−θ3zl(u))) (1 + zl(u)2)log(θ4) zl(u),

z1(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

z0(u) := 2erf−1
low(2u − 1), erf−1

low(v) :=
π
2 (u +

π
12

u3) .

High-fidelity only:
too few simulations!

Low-fidelity only:
Many simulations,
but low quality!

ML-NLE: both many
simulations and high quality!

G-and-k distribution

0 10 20

x

0.0

0.1

0.2

0.3

D
en

si
ty

(Almost) exact
ML-NLE (300)
NLE (high)
NLE (low)

n
=

10
4

n
=

30
0

n
1

=
50

n
1

=
10

0

n
1

=
30

0

10°1

100

K
LD

Prangle, D. (2020). gk: An R Package for the g-and-k and generalised g-and-h distributions. The R Journal, 12(1):7.

Gl
θ(u) = θ1 + θ2 1 + 0.8 (1 − exp(−θ3zl(u))

1 + exp(−θ3zl(u))) (1 + zl(u)2)log(θ4) zl(u),

z1(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

z0(u) := 2erf−1
low(2u − 1), erf−1

low(v) :=
π
2 (u +

π
12

u3) .

High-fidelity only:
too few simulations!

Low-fidelity only:
Many simulations,
but low quality!

ML-NLE: both many
simulations and high quality!

G-and-k distribution

0 10 20

x

0.0

0.1

0.2

0.3

D
en

si
ty

(Almost) exact
ML-NLE (300)
NLE (high)
NLE (low)

0 0.5 1
Confidence Level

0

0.5

1

Em
pi

ric
al

C
ov

er
ag

e

Overconfident

U
nd

er
co

nfi
de

nt

ML-NPE (100)
NPE (high)
NPE (low)

n
=

10
3

n
=

10
0

n
1

=
10

n
1

=
50

n
1

=
10

0

°1.0

°0.5

0.0

N
LP

D

n
=

10
4

n
=

30
0

n
1

=
50

n
1

=
10

0

n
1

=
30

0

10°1

100

K
LD

Prangle, D. (2020). gk: An R Package for the g-and-k and generalised g-and-h distributions. The R Journal, 12(1):7.

Gl
θ(u) = θ1 + θ2 1 + 0.8 (1 − exp(−θ3zl(u))

1 + exp(−θ3zl(u))) (1 + zl(u)2)log(θ4) zl(u),

z1(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

z0(u) := 2erf−1
low(2u − 1), erf−1

low(v) :=
π
2 (u +

π
12

u3) .

G-and-k distribution

0 10 20

x

0.0

0.1

0.2

0.3

D
en

si
ty

(Almost) exact
ML-NLE (300)
NLE (high)
NLE (low)

0 0.5 1
Confidence Level

0

0.5

1

Em
pi

ric
al

C
ov

er
ag

e

Overconfident

U
nd

er
co

nfi
de

nt

ML-NPE (100)
NPE (high)
NPE (low)

n
=

10
3

n
=

10
0

n
1

=
10

n
1

=
50

n
1

=
10

0

°1.0

°0.5

0.0

N
LP

D

n
=

10
4

n
=

30
0

n
1

=
50

n
1

=
10

0

n
1

=
30

0

10°1

100

K
LD

Prangle, D. (2020). gk: An R Package for the g-and-k and generalised g-and-h distributions. The R Journal, 12(1):7.

Gl
θ(u) = θ1 + θ2 1 + 0.8 (1 − exp(−θ3zl(u))

1 + exp(−θ3zl(u))) (1 + zl(u)2)log(θ4) zl(u),

z1(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

z0(u) := 2erf−1
low(2u − 1), erf−1

low(v) :=
π
2 (u +

π
12

u3) .

ML-NPE: Similar conclusion!

G-and-k distribution

0 10 20

x

0.0

0.1

0.2

0.3

D
en

si
ty

(Almost) exact
ML-NLE (300)
NLE (high)
NLE (low)

0 0.5 1
Confidence Level

0

0.5

1

Em
pi

ric
al

C
ov

er
ag

e

Overconfident

U
nd

er
co

nfi
de

nt

ML-NPE (100)
NPE (high)
NPE (low)

n
=

10
3

n
=

10
0

n
1

=
10

n
1

=
50

n
1

=
10

0

°1.0

°0.5

0.0

N
LP

D

n
=

10
4

n
=

30
0

n
1

=
50

n
1

=
10

0

n
1

=
30

0

10°1

100

K
LD

Prangle, D. (2020). gk: An R Package for the g-and-k and generalised g-and-h distributions. The R Journal, 12(1):7.

Gl
θ(u) = θ1 + θ2 1 + 0.8 (1 − exp(−θ3zl(u))

1 + exp(−θ3zl(u))) (1 + zl(u)2)log(θ4) zl(u),

z1(u) = Φ−1(u) = 2erf−1(2u − 1), u ∼ Unif([0,1]),

z0(u) := 2erf−1
low(2u − 1), erf−1

low(v) :=
π
2 (u +

π
12

u3) .

Coverage slightly
cautious

Toggle-switch models for genes (d=1, p=7)

Bonassi, F. V., You, L., & West, M. (2011). Bayesian learning from marginal data in bionetwork models. Statistical Applications
in Genetics and Molecular Biology, 10(1).

You only
observe the
last time step

Toggle-switch models for genes (d=1, p=7)

Bonassi, F. V., You, L., & West, M. (2011). Bayesian learning from marginal data in bionetwork models. Statistical Applications
in Genetics and Molecular Biology, 10(1).

You only
observe the
last time step

Toggle-switch models for genes (d=1, p=7)

0 200 400 600 800 1000
x

0.000

0.002

0.004

0.006

0.008 High (T = 300)
Med. (T = 80)
Low (T = 50)

Bonassi, F. V., You, L., & West, M. (2011). Bayesian learning from marginal data in
bionetwork models. Statistical Applications in Genetics and Molecular Biology, 10(1).

Toggle-switch models for genes (d=1, p=7)

0 200 400 600 800 1000
x

0.000

0.002

0.004

0.006

0.008 High (T = 300)
Med. (T = 80)
Low (T = 50)

Observations bi-modal, with second mode only
well approximated for high-fidelity levels

Bonassi, F. V., You, L., & West, M. (2011). Bayesian learning from marginal data in
bionetwork models. Statistical Applications in Genetics and Molecular Biology, 10(1).

Toggle-switch models for genes (d=1, p=7)

0 200 400 600 800 1000
x

0.000

0.002

0.004

0.006

0.008 High (T = 300)
Med. (T = 80)
Low (T = 50)

Observations bi-modal, with second mode only
well approximated for high-fidelity levels

Bonassi, F. V., You, L., & West, M. (2011). Bayesian learning from marginal data in
bionetwork models. Statistical Applications in Genetics and Molecular Biology, 10(1).

M
L-

N
LE

N
LE

(h
ig

h)

N
LE

(m
ed

.)

N
LE

(lo
w

)

0.0

0.5

1.0

1.5

2.0

M
M

D

n0 = 10000
n1 = 500
n2 = 300

Toggle-switch models for genes (d=1, p=7)

0 200 400 600 800 1000
x

0.000

0.002

0.004

0.006

0.008 High (T = 300)
Med. (T = 80)
Low (T = 50)

Observations bi-modal, with second mode only
well approximated for high-fidelity levels

Bonassi, F. V., You, L., & West, M. (2011). Bayesian learning from marginal data in
bionetwork models. Statistical Applications in Genetics and Molecular Biology, 10(1).

M
L-

N
LE

N
LE

(h
ig

h)

N
LE

(m
ed

.)

N
LE

(lo
w

)

0.0

0.5

1.0

1.5

2.0

M
M

D

n0 = 10000
n1 = 500
n2 = 300

ML-NLE benefits from low-fidelity
simulations for first mode but also from
high-fidelity simulations for second mode

Back to cosmology…. (d=39, p=1)

Low-fidelity High-fidelity

10°1

100

101

102

ML-NPE: n0 = 20, n1 = 980
NPE: (all high fidelity!)n = 20

Back to cosmology…. (d=39, p=1)

0 0.5 1
Confidence Level

0

0.5

1

Em
pi

ric
al

C
ov

er
ag

e

Overconfident

U
nd

er
co

nfi
de

nt

ML-NPE
NPE

ML-NPE NPE
°4

°2

0

2

4

N
LP

D

Low-fidelity High-fidelity

10°1

100

101

102

ML-NPE: n0 = 20, n1 = 980
NPE: (all high fidelity!)n = 20

Back to cosmology…. (d=39, p=1)

0 0.5 1
Confidence Level

0

0.5

1

Em
pi

ric
al

C
ov

er
ag

e

Overconfident

U
nd

er
co

nfi
de

nt

ML-NPE
NPE

ML-NPE NPE
°4

°2

0

2

4

N
LP

D

Low-fidelity High-fidelity

10°1

100

101

102

ML-NPE: n0 = 20, n1 = 980
NPE: (all high fidelity!)n = 20 Improve fit of the

surrogate posterior!

Back to cosmology…. (d=39, p=1)

0 0.5 1
Confidence Level

0

0.5

1

Em
pi

ric
al

C
ov

er
ag

e

Overconfident

U
nd

er
co

nfi
de

nt

ML-NPE
NPE

ML-NPE NPE
°4

°2

0

2

4

N
LP

D

Low-fidelity High-fidelity

10°1

100

101

102

ML-NPE: n0 = 20, n1 = 980
NPE: (all high fidelity!)n = 20 Improve fit of the

surrogate posterior!
Improved calibration!

Conclusion

Conclusion

• We use multilevel Monte Carlo in neural SBI, allowing for a rigorous way of
combining low- and high-fidelity simulations!

Conclusion

• We use multilevel Monte Carlo in neural SBI, allowing for a rigorous way of
combining low- and high-fidelity simulations!

• Lots of interest from practitioners; two physics papers on this topic:
A. A. Saoulis, D. Piras, N. Jeffrey, A. Spurio-Mancini, A. M. G. Ferreira, and B. Joachimi (2025+). Transfer
learning for multifidelity simulation-based inference in cosmology. arXiv:2505.21215.

L. Thiele, A. E. Bayer, and N. Takeishi. Simulation-efficient cosmological inference with multi-fidelity SBI
(2025+). arXiv:2507.00514.

Conclusion

• We use multilevel Monte Carlo in neural SBI, allowing for a rigorous way of
combining low- and high-fidelity simulations!

• Slides from a recent course on SBI at Greek stochastic 2025: https://
fxbriol.github.io/pdfs/slides-SBI-course.pdf

• Lots of interest from practitioners; two physics papers on this topic:
A. A. Saoulis, D. Piras, N. Jeffrey, A. Spurio-Mancini, A. M. G. Ferreira, and B. Joachimi (2025+). Transfer
learning for multifidelity simulation-based inference in cosmology. arXiv:2505.21215.

L. Thiele, A. E. Bayer, and N. Takeishi. Simulation-efficient cosmological inference with multi-fidelity SBI
(2025+). arXiv:2507.00514.

https://fxbriol.github.io/pdfs/slides-SBI-course.pdf
https://fxbriol.github.io/pdfs/slides-SBI-course.pdf

Related recent work

Bharti, A., Huang, D., Kaski, S. & Briol, F-X. (2025). Cost-aware simulation-based inference. Proceedings of
The 28th International Conference on Artificial Intelligence and Statistics, PMLR 258:28-36.

Sometimes the cost of simulation (i.e. of) depends on !Gθ θ

OWABI recording (Ayush Bharti; 30th April 2025): https://www.youtube.com/watch?v=9tnp9fbpydY

https://fxbriol.github.io/images/ca-SBI.mp4
https://www.youtube.com/watch?v=9tnp9fbpydY

Related recent work

Bharti, A., Huang, D., Kaski, S. & Briol, F-X. (2025). Cost-aware simulation-based inference. Proceedings of
The 28th International Conference on Artificial Intelligence and Statistics, PMLR 258:28-36.

Sometimes the cost of simulation (i.e. of) depends on !Gθ θ

OWABI recording (Ayush Bharti; 30th April 2025): https://www.youtube.com/watch?v=9tnp9fbpydY

https://fxbriol.github.io/images/ca-SBI.mp4
https://www.youtube.com/watch?v=9tnp9fbpydY

Any Questions?

Code: https://github.com/yugahikida/multilevel-sbi

Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X. Multilevel neural simulation-based
inference. arXiv:2506.06087. To appear at NeurIPS 2025.

https://github.com/yugahikida/multilevel-sbi

