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Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its
Application, 6,379—-403.
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Bayesian inference: i
g 70131, sy & | [ 001 10)2(6)
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Two main approaches: X; = G@(ui)
« Approximate Bayesian computation (ABC).
Deterministic map u, ~ U
« Neural-based simulation-based inference. (generator) (randomness)

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its
Application, 6,379—-403.

Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of
the National Academy of Sciences of the United States of America, 117(48).
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Simulators can be really computationally expensive!

* Most simulators used in SBI papers take only a few seconds (or less) to run.
« Even if a simulator takes only a few minutes, we typically need thousands of simulations!

« Simulators that take more time are currently out of reach of existing methods.

Many large-scale scientific applications are still out of reach!

Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X. Multilevel neural simulation-based inference.
arXiv:2506.06087. to appear at NeurlPS 2025.
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compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303—1322.



(+ =~ 400 scientists
from 25 institutions
in 7 countries)

The Dark energy
survey cameral

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303—1322.



(+ =~ 400 scientists
from 25 institutions
in 7 countries)

The Dark energy
survey cameral

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303—1322.



(+ =~ 400 scientists
from 25 institutions
in 7 countries)

The Dark energy Data collected through the Dark
survey cameral energy survey camera

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303—1322.



(+ =~ 400 scientists
from 25 institutions
in 7 countries)

In(d+1)

The Dark energy Data collected through the Dark
survey cameral energy survey camera

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303—1322.



(+ =~ 400 scientists
from 25 institutions
in 7 countries)

In(d+ 1)

‘Gower Street simulation’
run by Niall and colleagues
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Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303—1322.

Villaescusa-Navarro, F., et al. (2021). The CAMELS project: Cosmology and astrophysics with machine-learning simulations.
The Astrophysical Journal, 915(1),71.
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Gravity-only N-
body simulations 102
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Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural
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Existing work on multi-fidelity in SBI

Many great works, but which are not specialised for neural-SBI:

Jasra, A., Jo, S., Nott, D., Shoemaker, C., & Tempone, R. (2019). Multilevel Monte Carlo in approximate Bayesian computation. Stochastic
Analysis and Applications, 37(3), 346-360.

Prescott, T. P., & Baker, R. E. (2020). Multifidelity approximate Bayesian computation. SIAM-ASA Journal on Uncertainty
Quantification, 8(1), 114-138.

Warne, D. J., Prescott, T. P., Baker, R. E., & Simpson, M. J. (2022). Multifidelity multilevel Monte Carlo to accelerate approximate
Bayesian parameter inference for partially observed stochastic processes. Journal of Computational Physics, 469, 111543.



Existing work on multi-fidelity in SBI

One very recent attempt, but no theory:

Krouglova, A. N., Johnson, H. R., Confavreux, B., Deistler, M., & Gongalves, P. J. (2025). Multifidelity simulation-based inference for
computationally expensive simulators. arXiv:2502.08416.



Existing work on multi-fidelity in SBI

Open problem: Rigorous and theoretically-grounded multi-fidelity for neural SBI!
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« Can think of this as a two-step procedure:

Zammit-mangion, A., Sainsbury-Dale, M., & Huser, R. (2025). Neural methods for amortized parameter inference. Annual Review
of Statistics and Its Application, 12,311-3335.

Deistler, M., Boelts, J., Steinbach, P., Moss, G., Moreau, T., Gloeckler, M., Rodrigues, P. L. C., Linhart, J., Lappalainen, J. K.,
Miller, B. K., Gongalves, P. J., Lueckmann, J.-M., Schroder, C., & Macke, J. H. (2025). Simulation-based inference: A practical
guide. arXiv:2508.12939.
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Neural SBI

« Can think of this as a two-step procedure:

Step 1: Simulate synthetic data, then use this to fit a neural surrogate
for the likelihood/posterior (often a normalising flow).

Step 2: Use our surrogate to do inference with the observed data.

Zammit-mangion, A., Sainsbury-Dale, M., & Huser, R. (2025). Neural methods for amortized parameter inference. Annual Review
of Statistics and Its Application, 12,311-3335.

Deistler, M., Boelts, J., Steinbach, P., Moss, G., Moreau, T., Gloeckler, M., Rodrigues, P. L. C., Linhart, J., Lappalainen, J. K.,
Miller, B. K., Gongalves, P. J., Lueckmann, J.-M., Schroder, C., & Macke, J. H. (2025). Simulation-based inference: A practical
guide. arXiv:2508.12939.
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Intro to normalising flows:
transformations and densities

- Consider some base distribution p,, and some transformation 7" such that
x=1(), v~p/()

. Suppose T is invertible and both T and 7! are differentiable. Then:
-1
P(x) = p,(v) [ detz(x) | = p (T~ () | det/r-1(v)|

- How do we design T if we want the density model to be very flexible?

Use neural networks!!
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* We end up with a normalising flow: |
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Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing flows for probabilistic
modeling and inference. JMLR, 22, 1-64.

Kobyzev, I., Prince, S. J. D., & Brubaker, M. A. (2021). Normalizing flows: An introduction and review of current methods. IEEE
TPAMI, 43(11), 3964-3979.



Normalising flows

* Note that we can compose such maps and keep their desirable properties:

2 1
Tqb,@_Tgbé’ ..on) °T¢9

Straightforward to create

» We end up with a normalising flow: 1 conditional density!

44x10) = p,(v) | det;, (@)

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing flows for probabilistic
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Normalising flows

* Note that we can compose such maps and keep their desirable properties:

2 1
Tqb,@_Tgbé’ ..on) °T¢9

* We end up with a normalising flow:

44x10) = p,(v) | det;, (@)

T(ﬁ g e s Tgﬂ are selected to make q¢(x | ©) tractable

—1

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing flows for probabilistic
modeling and inference. JMLR, 22, 1-64.

Kobyzev, I., Prince, S. J. D., & Brubaker, M. A. (2021). Normalizing flows: An introduction and review of current methods. IEEE
TPAMI, 43(11), 3964-3979.
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lllustration of normalising flows

pv(v) Q¢(x)

The composition of relatively simple transformations can give fairly complex maps!

Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1-64.
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Neural likelihood estimation (NLE)

. Step 1: train qd)( - | @) to approximate the likelihood using samples from the
prior (0, ...,8, ~ x)and simulator (x; ~ p( - | ))):

A . 1 <
¢, = arg ngn CNLe(P) = — — Z log q,(x;|0) = — Eg_p9)[Exup,[10g g, (x| O)]]
i=1

« Step 2: Do Bayes with approximate likelihood! Typically the most computationally
expensive step!!

ANLE@ Y15 -+ Vi) H q;5 (i1 0)m(0)
=1

« Can do similarly and approximate a posterior..... Neural posterior estimation (NPE).
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A better step 1?

1 n
CNLE(@P) = — ; Z log qqs(xi 16) ~ — Eng(e)[[ExN[pg[lOg qqﬁ(x | )]]
i=1

Can we do this better/cheaper?!

Yes, Multilevel Monte Carlo!

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24,259-328.
Jasra, A., Law, K., & Suciu, C. (2020). Advanced Multilevel Monte Carlo Methods. International Statistical Review, 88(3), 548-579.
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Multilevel Monte Carlo

Suppose we have a f, f;, ..., f; = f of increasing cost but also increasing accuracy. Then:

E.. 2] =E,_ (@] =E,., | @] +E._., (2 -fi_@)
L

=E,., @] + Z E.., [f(@) —fi_,D)]

—Zfo(onZL:(lZ ) —fii (2 )))

=1

Very cheap - can Very expensive -
take n, large. cannot take 7, large....
But low variance!



Multilevel NLE

—Ep., [[Ex~uﬂ>9 llog q,(x| 9)”



M U Itl Ievel N LE Change of measure

o
(

_ [EHNﬂ [[EXNPQ llOg qu(x l 6)]] = [EQNﬂ,MN[U l—lOg de (G@(l/t) | 9)]



Multilevel NLE

—Eps [[Ex~uﬂ>9 llog q,(x| 9)” = Egoru~t [—log 4y (G@(u) | 9)]

= Egonus| 024, (GE@)16)



Multilevel NLE

—Eps [[Ex~uﬂ>9 llog q,(x| 9)” = Egoru~t [—log 4y (G@(u) | 9)]

= Egonus| 024, (GE@)16)

= Egopt |46, u)]

This is now a joint expectation in the prior and U!



Multilevel NLE

—Eps [[Ex~uﬂ>9 llog q,(x| 9)” = Egoru~t [—log 4y (G@(u) | 9)]

= Egonus| 024, (GE@)16)

= Egopt |46, u)]

This is now a joint expectation in the prior and U!

We can directly apply MLMC to it, where intermediate integrands are of the form:

£i(6.0) = —log q, (Glu)| 6)



Multilevel NLE

—Eps [[Ex~uﬂ>9 llog q,(x| 9)” = Egoru~t [—log 4y (G@(u) | 9)]

= Egonus| 024, (GE@)16)

= Egopt |46, u)]

This is now a joint expectation in the prior and U!
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Multilevel neural SBI

Our ‘data’ is therefore:

[ 1 o~ I-1( .1 ! !
{‘gi’”i’Gglz(ui)’Ge; (ul>} where 0 ~ m,u; ~ U,

Our objective for step 1 is:
L n;

1 & 1
AMLNLE@) =~ D Sl oD+ 3~ 3 (5t 0 = 5 61
i=1 =1 =1

Var |t 60) = £l 60| = Varl £y(ut, 01 + Varl £l 631 = 2Cov |fiu, 61, £t 6]

Note that we presented this for NLE, but the same could work for NPE, NRE, etc...!
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Challenges with training

ny

1 L 1
CML-NLE(®) = " 2. [l )+ — ) <f(,15(ul-1a 0)) — fu;, 9i1))
i=1

R
| & LN
n_OZVf¢(ui,9i) ~ E[Vf)) ELV/gI~ = PIRAH N
i=1 i=1

Contradictory gradients! This is a problem when we are close to stationarity
and ny/n, are small... The variance of the negative term is always large!!

We fix the issue by normalising gradients so that these two terms have the
same magnitude, which stabilises training.



Bound on the variance

Under some mild assumptions, we get:

(P) _
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Bound on the variance

Under some mild assumptions, we get:

K LK
Var [£MmL-NLE(@®)] < o'9) (IIGOII‘V‘VM(,[X[U) + 1) + ) (9) IG' = G5
=1 !

1,4
ng n Wha(zxU)
' Complexity of low-fidelity ' Complexity of other
Large!  generator - large! Smalll"integrands - small!

Assumptions:
1) We need the generators to have at least one derivative and four moments! (W1’4(7r X U))
2) We need 7 and U to satisfy a Poincaré inequality (ok for Gaussian, uniform, etc..)

3) The surrogate q¢( - | @) has a Lipschitz gradient locally, and does not blow up too fast.
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Simulations per level

We can find the optimal number of simulations per level given a maximum
computational budget of Cpqget:

Cbud C
get 0 " budget ] -1
\/”G ||W14(ﬂ><[u) n X \/C T C ”G G ”W14(7r><[U)
l I+1

Note that these expressions contain a lot of quantities we may not know a-priori, but it is
still indicative and helpful for selecting which simulations to run in practice.
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 Slides from a recent course on SBI at Greek stochastic 2025: https://
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Any Questions?

Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X. Multilevel neural simulation-based
inference. arXiv:2506.06087. To appear at NeurlPS 2025.

Code: https://github.com/yugahikida/multilevel-sbi
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