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Bayesian inference:

• Approximate Bayesian computation (ABC).

Two main approaches:

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its 
Application, 6, 379–403.
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Simulation-based inference (SBI)
Bayesian inference:

Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of 
the National Academy of Sciences of the United States of America, 117(48).

• Neural-based simulation-based inference.

• Approximate Bayesian computation (ABC).

Two main approaches:

Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its 
Application, 6, 379–403.
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• Most simulators used in SBI papers take only a few seconds (or less) to run. 

• Even if a simulator takes only a few minutes, we typically need thousands of simulations! 

• Simulators that take more time are currently out of reach of existing methods.

Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X. Multilevel neural simulation-based inference. 
arXiv:2506.06087. to appear at NeurIPS 2025.
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A motivating application

Jeffrey, N., et al. (2025). Dark energy survey year 3 results: likelihood-free, simulation-based wCDM inference with neural 
compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322.
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run by Niall and colleagues 
at UCL Physics
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Existing work on multi-fidelity in SBI
Many great works, but which are not specialised for neural-SBI:

Prescott, T. P., & Baker, R. E. (2020). Multifidelity approximate Bayesian computation. SIAM-ASA Journal on Uncertainty 
Quantification, 8(1), 114–138.

Jasra, A., Jo, S., Nott, D., Shoemaker, C., & Tempone, R. (2019). Multilevel Monte Carlo in approximate Bayesian computation. Stochastic 
Analysis and Applications, 37(3), 346–360.

Warne, D. J., Prescott, T. P., Baker, R. E., & Simpson, M. J. (2022). Multifidelity multilevel Monte Carlo to accelerate approximate 
Bayesian parameter inference for partially observed stochastic processes. Journal of Computational Physics, 469, 111543.
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• Can think of this as a two-step procedure:

Zammit-mangion, A., Sainsbury-Dale, M., & Huser, R. (2025). Neural methods for amortized parameter inference. Annual Review 
of Statistics and Its Application, 12, 311–335.

Deistler, M., Boelts, J., Steinbach, P., Moss, G., Moreau, T., Gloeckler, M., Rodrigues, P. L. C., Linhart, J., Lappalainen, J. K., 
Miller, B. K., Gonçalves, P. J., Lueckmann, J.-M., Schröder, C., & Macke, J. H. (2025). Simulation-based inference: A practical 
guide. arXiv:2508.12939.
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Neural SBI

• Can think of this as a two-step procedure:

Step 1: Simulate synthetic data, then use this to fit a neural surrogate 
for the likelihood/posterior (often a normalising flow).

Step 2: Use our surrogate to do inference with the observed data.

Zammit-mangion, A., Sainsbury-Dale, M., & Huser, R. (2025). Neural methods for amortized parameter inference. Annual Review 
of Statistics and Its Application, 12, 311–335.

Deistler, M., Boelts, J., Steinbach, P., Moss, G., Moreau, T., Gloeckler, M., Rodrigues, P. L. C., Linhart, J., Lappalainen, J. K., 
Miller, B. K., Gonçalves, P. J., Lueckmann, J.-M., Schröder, C., & Macke, J. H. (2025). Simulation-based inference: A practical 
guide. arXiv:2508.12939.
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= pv(T−1(x)) detJT−1(x)px(x) = pv(v) detJT(x)
−1

• Suppose  is invertible and both  and  are differentiable. Then:T T T−1

x = T(v), v ∼ pv(v)
• Consider some base distribution  and some transformation  such that pv T

• How do we design  if we want the density model to be very flexible?T

Use neural networks!!
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pv(v) qϕ(x)

Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). 
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.
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Plots borrowed from: Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). 
Normalizing flows for probabilistic modeling and inference. JMLR, 22, 1–64.

The composition of relatively simple transformations can give fairly complex maps!
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• Can do similarly and approximate a posterior….. Neural posterior estimation (NPE).
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A better step 1?

ℓNLE(ϕ) = −
1
n

n

∑
i=1

log qϕ(xi |θi) ≈ − 𝔼θ∼p(θ)[𝔼x∼ℙθ
[log qϕ(x |θ)]]

Can we do this better/cheaper?!

Yes, Multilevel Monte Carlo!

Jasra, A., Law, K., & Suciu, C. (2020). Advanced Multilevel Monte Carlo Methods. International Statistical Review, 88(3), 548–579.

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328.
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Very cheap - can 
take  large.n0

Very expensive - 
cannot take  large…. 
But low variance!
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Contradictory gradients! This is a problem when we are close to stationarity 
and   are small… The variance of the negative term is always large!!n0/n1

We fix the issue by normalising gradients so that these two terms have the 
same magnitude, which stabilises training.
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Under some mild assumptions, we get:

Complexity of low-fidelity 
generator - large!

Complexity of other 
integrands - small!Small!Large!

1) We need the generators to have at least one derivative and four moments! ( )W1,4(π × 𝕌)
Assumptions:

2) We need  and  to satisfy a Poincaré inequality (ok for Gaussian, uniform, etc..)π 𝕌
3) The surrogate  has a Lipschitz gradient locally, and does not blow up too fast.qϕ( ⋅ |θ)
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l ∝
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Cl + Cl+1
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W1,4(π×𝕌).

We can find the optimal number of simulations per level given a maximum 
computational budget of :Cbudget

Note that these expressions contain a lot of quantities we may not know a-priori, but it is 
still indicative and helpful for selecting which simulations to run in practice.
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ML-NPE: Similar conclusion!
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Any Questions?

Code: https://github.com/yugahikida/multilevel-sbi 

Hikida, Y., Bharti, A., Jeffrey, N. & Briol, F-X. Multilevel neural simulation-based 
inference. arXiv:2506.06087. To appear at NeurIPS 2025.

https://github.com/yugahikida/multilevel-sbi

