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We started with two authors back in 2018 then things got out of hands….
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The birth of Stein’s method (1972)

1972-2015: most of the focus is on probability theory of theoretical statistics.

Prof. Charles Stein 
(Stanford)

Prof. Louis Chen (NUS)
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Outline

• What is Stein’s method, and why should you care…

• Computational tools based on Stein’s method.

• Some nice (new) algorithms!
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Stein characterisations
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collecting and analysis data, and making conclusions from this.

• This is hard as we typically only have limited data, and we therefore need to be 
careful in how we represent and communicate uncertainty!



• In statistics, we typically represent uncertainty through probability distributions. 

Uncertainty through distributions
• Our job, as statisticians, is to help make sense of the world around us by 

collecting and analysis data, and making conclusions from this.

• This is hard as we typically only have limited data, and we therefore need to be 
careful in how we represent and communicate uncertainty!



• Our language for representing uncertainty is therefore a language for 
representing probability distributions. 

Some popular characterisations



• Our language for representing uncertainty is therefore a language for 
representing probability distributions. 

Some popular characterisations

• We have many different ways of representing a probability distribution :P

F(x) = 𝔼X∼P [1{X≤x}]CDF:



• Our language for representing uncertainty is therefore a language for 
representing probability distributions. 

Some popular characterisations

• We have many different ways of representing a probability distribution :P

F(x) = 𝔼X∼P [1{X≤x}]CDF: p(x) =
dF(x)

dx
PDF:



• Our language for representing uncertainty is therefore a language for 
representing probability distributions. 

Some popular characterisations

• We have many different ways of representing a probability distribution :P

F(x) = 𝔼X∼P [1{X≤x}]CDF: p(x) =
dF(x)

dx
PDF:
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• Our language for representing uncertainty is therefore a language for 
representing probability distributions. 

Some popular characterisations

• We have many different ways of representing a probability distribution :P

F(x) = 𝔼X∼P [1{X≤x}]CDF: p(x) =
dF(x)

dx
PDF:

M(t) = 𝔼X∼P[exp(tX)]MGF: φ(t) = 𝔼X∼P[exp(itX)]CF:

…
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Difference between characterisations

• Q: “Why do we need so many ways of describing probability 
distributions?”

• A: They each give us a mathematical language to work with 
probability distributions, and sometime expressing yourself in one 
language is easier than doing so with another.
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Characterisations in probability theory
• Example 1: Cumulative distribution functions are great 

for computing tail probabilities , 
but really terrible for representing multivariate 
distributions!

P(X ≥ x) = 1 − F(x)



• Example 2: Characteristic functions are the expectation of a complex 
function and so not very interpretable, but their properties make the proof 
of the central limit theorem much easier!

n ( 1
n

n

∑
i=1

Xi − 𝔼X∼P[X]) → 𝒩(0,σ2)
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machine learning

• Example 1: The moment generating function 
 is convenient for hypothesis testing or 

parameter estimation:
M(t)

𝔼X∼P[Xn] =
dnM(t)

dtn
t=0

• We can check if  by checking whether moments of 
 are close to those of ! 

{xi}n
i=1 ∼ P

{xi}n
i=1 P

• We will now see yet another characterisation….
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• A Stein characterisation for  is a pair  such thatP (𝒮P, 𝒢P)

Stein characterisation

Q = P ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

• In other words, you are now representing  with an entire family 
of functions with some peculiar property:

P

{h : h(x) = 𝒮P[g](x), g ∈ 𝒢P}

Stein operator

Stein class

• (At this point I want to clarify I am not a sadistic mathematician…. 
We will see why shortly, but first lets see some examples…)
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Characterising a 𝒩(0,σ2)

p(x) =
1

2πσ
exp (−

x2

2σ2 ) F(x) =
1
2

1 + Erf ( x

2σ )
M(t) = exp ( σ2t2

2 ) φ(t) = exp (−
σ2t2

2 )

• At some point in your BSc/MSc/PhD, you have probably come 
across the many characterisations of a Gaussian:

• We will now add a new one…
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• Recall the general form of a Stein characterisation as a pair :(𝒮P, 𝒢P)

Stein characterisation for a 𝒩(0,σ2)

Q = 𝒩(0,σ2) ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

𝒮P[g](x) := σ2g′ (x) − xg(x)

𝒢P := {g : ℝd → ℝ |g almost diff. & ∫ |g′ (x) |p(x)dx < ∞}
• For , one such pair isP = 𝒩(0,σ2)
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Illustration for a second function

σ2 = 1, n = 106,
{xi}n

i=1 ∼ P = 𝒩(0,σ2)

1
n

n

∑
i=1

𝒮P[g](xi) ≈ 0.002

Mean zero function!

1
n

n

∑
i=1

g(xi) ≈ 1.298
Arbitrary function in . 
Unknown mean…

𝒢P

Not differentiable but almost differentiable… 
We can make many many functions have mean zero!

P = 𝒩(0,1)
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Mean zero only against P though!
{xi}n

i=1 ∼ Q = 𝒩(1,1) ≠ P
1
n

n

∑
i=1

𝒮P[g](xi) ≈ − 1.661

P = 𝒩(0,1)

{xi}n
i=1 ∼ Q = 𝒩(0,9) ≠ P

1
n

n

∑
i=1

𝒮P[g](xi) ≈ − 2.170

We have a characterisation!
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• One last time to make sure you remember it, a Stein 
characterisation for  is a pair  such thatP (𝒮P, 𝒢P)

Stein characterisation

Q = P ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

Any questions??



• Some might be more computationally 
convenient than others. 

• Some might be easier to manipulate… 

• This book has 350+ pages on characterising 
Gaussian distributions in different ways, and 
how this can help for theory…

Stein characterisations are not unique!



Stein characterisations for other 
distributions

[https://sites.google.com/site/steinsmethod]

Prof. Yvik Swan (ULB)

https://sites.google.com/site/steinsmethod


Stein’s method as a computational tool
Why Stein? Part I: Intractable integrals



• At this point, we have a new characterisation (i.e. mathematical 
language!) to represent distributions.

Why Stein characterisations?



• At this point, we have a new characterisation (i.e. mathematical 
language!) to represent distributions.

Why Stein characterisations?

• BUT it is seemingly much more complicated!!  

• Instead of a single function, we now have (infinitely) many…..



• At this point, we have a new characterisation (i.e. mathematical 
language!) to represent distributions.

Why Stein characterisations?

• BUT it is seemingly much more complicated!!  

• Instead of a single function, we now have (infinitely) many…..

The key point is that all of these functions have mean 
zero under a distribution of interest, which is super useful 
from a computational viewpoint!
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• Let . One of the main computational challenges encountered in 
statististics and machine learning is to have to compute:

𝒳 ⊆ ℝd

A key challenge in computational 
statistics

𝔼X∼P[ f(X)] = ∫𝒳
f(x)p(x)dx = ??

• This is a really hard problem when:
• The problem is high-dimensional (i.e.  is large). 

• The function  is complicated and/or expensive. 

• The distribution P is complex/multi-modal and/or  
cannot be evaluated point wise.

d
f : 𝒳 → ℝ

p(x)
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Examples in Bayesian statistics

𝔼X∼P[ f(X)] = ∫𝒳
f(x)p(x)dx = ??

1. Posterior moments:  is some unknown parameter of our 
model.  for some ,  is a posterior density.

x
f(x) = xl l ∈ ℕ p(x)

2. Model evidence:   is some unknown parameter of our model. 
 is the likelihood,  is a prior density.

x
f(x) p(x)
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integrated out.
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1. Marginalisation: Our likelihood could be based on some 
unobserved variables (nuisance parameters) which need to be 
integrated out.

2. Unnormalised likelihoods: Sometimes we only have access to a 
likelihood up to a normalisation constant, which is the integral of the 
unnormalised part (e.g. graphical models, models on manifolds, 
deep exponential family models).

Examples in frequentist statistics

𝔼X∼P[ f(X)] = ∫𝒳
f(x)p(x)dx = ??
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• Clearly if we have that  can be written asf

Why Stein characterisations: 
Intractable integrals

f(x) = 𝒮P[g](x) + C for some 𝒮P, g ∈ 𝒢P, C ∈ ℝ

𝔼X∼P[ f(X)] = 𝔼X∼P[𝒮P[g](x)] + 𝔼X∼P[C] = C
• Then we can compute this integral/expectation in closed form:

• The flexibility in  makes this not too unlikely! 
• A key trick is therefore to replace our intractable integrals with integrals 

that we can compute exactly.

𝒮P, g, C

Known!
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• Suppose we have a prior , and  iid observations from a 
distribution with density . Then the posterior is:

p(θ) n
p(x |θ)

Characterisation for a complicated 
posterior distribution?

p(θ |x1, …, xn) =
1
C

n

∏
i=1

p(xi |θ)p(θ)

?F(x) ?M(t) ?φ(t)

All characterisations are intractable!
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∏
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p(xi |θ)p(θ)dθ
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• Since we are not able to characterise these distributions in a 
computationally tractable way, we cannot answer most basic 
questions of interest to statisticians!

Implications

“Is  a good model for our data?”P

“What is the probability of observing an extreme event?”

“What is the expected value of the important summary statistic  under ?”f(x) P

Thankfully, this is another case where Stein characterisations shine! 
The main reason is that  and  can be obtained without 
knowledge of normalisation constants (more on this shortly).

𝒮P 𝒢P



Stein’s method as a computational tool
The generator approach to Stein operators



• So far, I have shown you a simple Stein characterisation for the  
distribution.

𝒩(0,σ2)

Finding Stein characterisations



• So far, I have shown you a simple Stein characterisation for the  
distribution.

𝒩(0,σ2)

Finding Stein characterisations

• That’s cute, but what about these more complex models…?



• So far, I have shown you a simple Stein characterisation for the  
distribution.

𝒩(0,σ2)

Finding Stein characterisations

• That’s cute, but what about these more complex models…?

• One of the main aim of theoretical research on Stein’s method is to find a 
convenient recipe to discover Stein characterisations.



• So far, I have shown you a simple Stein characterisation for the  
distribution.

𝒩(0,σ2)

Finding Stein characterisations

• That’s cute, but what about these more complex models…?

• One of the main aim of theoretical research on Stein’s method is to find a 
convenient recipe to discover Stein characterisations.

Your favourite 
 distribution P Stein characterisation 

???



• So far, I have shown you a simple Stein characterisation for the  
distribution.

𝒩(0,σ2)

Finding Stein characterisations

• That’s cute, but what about these more complex models…?

• One of the main aim of theoretical research on Stein’s method is to find a 
convenient recipe to discover Stein characterisations.

Your favourite 
 distribution P Stein characterisation 

???

• Since this is hard, we will just follow what serious mathematicians have 
previously proposed…
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• Suppose  is a (sufficiently regular) vector-valued function 
. The Langevin Stein operator is given by:

g
g : ℝd → ℝd

The Langevin Stein operator

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

d

∑
j=1

∂gj(x)
∂xj

g(x) =

g1(x)
g2(x)

⋮
gd(x)

∇log p(x) =

∂ log p(x)
∂x1

⋮
∂ log p(x)

∂xd
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Recovering our operator for N(0,σ2)

• Take  and d = 1 p(x) =
1

2πσ
exp (−

x2

2σ2 ) ∇xlog p(x) = −
x
σ2

• Hence:
𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩ = −

x
σ2

g(x) + g′ (x)

i.e. !!𝒮P[g](x) = σ2𝒯[g](x)

• Before, we had… . 𝒮P[g](x) := σ2g′ (x) − xg(x)
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• Recall the problem of unnormalised densities:

Why this operator?

∇xlog p(x) = ∇xlog ( p̃(x)
C )

p(x) =
p̃(x)
C

• This is not a problem for score functions…

= ∇xlog p̃(x) − ∇xlog C = ∇xlog p̃(x)

Tractable!!

Intractable!
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• The Langevin operator is therefore ideal for unnormalised densities:

Operators based on the score

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

= ⟨∇xlog p̃(x), g(x)⟩ + ⟨∇, g(x)⟩

• It is however not the only Stein operator based on score functions 
(recall that Stein characterisations are not unique!).
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• The Langevin Stein operator is an example of Stein 
operator derived through the generator approach.

The generator approach

Prof. A. Barbour 
(U. Zurich)

• High-level idea: Construct a Markov chain/process with 
invariant distribution the distribution  you would like to 
characterise.

P

• One representation of a Markov chain is through its 
infinitesimal generator.

Infinitesimal generator = Stein operator
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Summary
• We have a new mathematical language (i.e. characterisation) to 

work with probability distributions.

• This new characterisation is quite a bit more complicated than 
what we are used to as it is represented through a pair.

(𝒮P, 𝒢P)
However, it is easy to find such operators/characterisation for very 
complex distribution (including posteriors or complex ML models)!

• What should we do with our new tool?



Outline (updated)

• What is Stein’s method, and why should you care…

• Computational tools based on Stein’s method.

• Some nice (new) algorithms!
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• One thing we might want to use our tool for is comparing distributions.

Discrepancies

• One idea would be to construct some notion of dissimilarity/
discrepancy between two distributions  based on our 
characterisation:

P, Q

• One limitation of most existing discrepancies is stats/ML is that they 
are not computable for complex .P, Q
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• A very popular class of discrepancies in statistics and ML are integral 
probability metrics (IPMs):

Integral probability metrics

D(P, Q) = sup
h∈ℋ

|𝔼X∼P[h(X)] − 𝔼X∼Q[h(X)] |

• If , then we are just comparing the means of  & .ℋ = {h(x) = x} P Q
• If  are all functions with Lipschitz constant less than 1, we recover the 

1-Wasserstein distance
ℋ

• If  are all bounded functions with maximum at 1, we recover the total 
variation distance.

ℋ

Hard to compute!
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A new class of IPMs from Stein
• Suppose we now want to consider functions of the form:

D(P, Q) = sup
h∈ℋ

|𝔼X∼P[h(X)] − 𝔼X∼Q[h(X)] |

• Then the expression simplifies:

ℋ = {h : h(x) = 𝒮P[g](x), g ∈ 𝒢P}

= sup
g∈𝒢P

|𝔼X∼P[𝒮P[g](X)] − 𝔼X∼Q[𝒮P[g](X)] |

= sup
g∈𝒢P

|𝔼X∼Q[𝒮P[g](X)] | We use our key property 
that our functions 
integrate to zero under P
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• A Stein discrepancy (SD) is a measure of dissimilarity between  and :P Q

Stein discrepancy

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

If we find that at least one  such that 
, then we know !

g ∈ 𝒢
𝔼X∼Q[𝒮P[g](X)] ≠ 0 Q ≠ P

We do not need  to be the whole of , and we will often 
take it to only be a subset: .

𝒢 𝒢P
𝒢 ⊆ 𝒢P
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• Question 2: When can we actually compute this? 

• Question 3: What can we use this measure of dissimilarity for?
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Q1: What properties does this have?

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

If  is large enough and , then we know 
that  (i.e. it is a statistical divergence)

𝒢 SD(P | |Q) = 0
Q = P

The magnitude of  tells us something about 
how far  is from .

SD(P | |Q)
Q P
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=  𝔼X∼Qn
[𝒮P[g](X )] =

1
n

n

∑
i=1

𝒮P[g](xi)

Answer 1: Compare to an empirical measure/dataset! Qn =
1
n

n

∑
i=1

δxi
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Q2: When can we compute it?

SD (P
1
n

n

∑
i=1

δxi) = sup
g∈𝒢

1
n

n

∑
i=1

𝒮P[g](X)

Answer 2: When  is not too large, so as to 
make this supremum tractable.

𝒢

Goal: Choose  the largest possible such 
that  is still tractable!

𝒢
SD

• We do however need to make sure  is not too small either, as 
otherwise the measure of similarity is not useful for anything.

𝒢
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Example: SD for N(0,σ2)
SD(P | |Qn) = sup

g∈𝒢

1
n

n

∑
i=1

𝒮P[g](xi)

= sup
g almost diff.

1
n

n

∑
i=1

σ2g′ (xi) − xig(xi)] = ??

The Stein class of almost differentiable functions is 
way too large for us to be able to find this supremum. 
Not so helpful as a computational tool….



Example 1: Graph-Stein discrepancies
GSD(P | |Q) = sup

g∈𝒢
𝔼X∼P[𝒮P[g](X)]

Gorham, J., & Mackey, L. (2015). Measuring sample quality with Stein’s method. 
Advances in Neural Information Processing Systems, 226–234.

𝒢 = {g : max (∥g(v)∥∞,∥∇g(v)∥∞,
∥g(x) − g(y)∥∞

∥x − y∥1
,

∥∇g(x) − ∇g(y)∥∞

∥x − y∥1 ) ≤ 1,

∥g(x) − g(y) − ∇g(x)(x − y)∥∞
1
2 ∥x − y∥2

1

≤ 1,
∥g(x) − g(y) − ∇g(y)(x − y)∥∞

1
2 ∥x − y∥2

1

≤ 1, ∀x, y ∈ E, v ∈ {xi}n
i=1}

 is the Langevin Stein operator.𝒮P
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GSD(P | |Q) = sup

g∈𝒢
𝔼X∼P[𝒮P[g](X)]

Gorham, J., & Mackey, L. (2015). Measuring sample quality with Stein’s method. 
Advances in Neural Information Processing Systems, 226–234.

𝒢 = {g : max (∥g(v)∥∞,∥∇g(v)∥∞,
∥g(x) − g(y)∥∞

∥x − y∥1
,

∥∇g(x) − ∇g(y)∥∞

∥x − y∥1 ) ≤ 1,

∥g(x) − g(y) − ∇g(x)(x − y)∥∞
1
2 ∥x − y∥2

1

≤ 1,
∥g(x) − g(y) − ∇g(y)(x − y)∥∞

1
2 ∥x − y∥2

1

≤ 1, ∀x, y ∈ E, v ∈ {xi}n
i=1}

 is the Langevin Stein operator.𝒮P

The class is small enough that we can find the maximum through 
linear programming!
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Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., & Mackey, L. (2019). Minimum Stein 
discrepancy estimators. Neural Information Processing Systems, 12964–12976.

𝒢 = {g = (g1, …, gd) ∈ C2(𝒳, ℝd) ∩ L2(𝒳; ℚ) : ∥g∥L2(𝒳;ℚ) ≤ 1}
 is the Langevin Stein operator.𝒮P

The class is small enough that we can attain the maximum!
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Hyvärinen, A. (2006). Estimation of non-normalized statistical models by score matching. 
Journal of Machine Learning Research, 6, 695–708.

• This is the method which powers many modern generative models 
such as diffusion models.
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Cannot use this as we typically don’t 
know the densities exactly….

p(x) =
p̃(x)
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Example 2: Hyvarinen divergence

SM(P | |Q) = 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

• Sadly we usually do not have access to  in most applications 
(typically  is some unknown data-generating process).

∇log q
Q

• The only type of application where this can be used is for parameter 
estimation/generative modelling, since we can typically still evaluate 
the divergence up to some additive constant.

More on this shortly….



Example 3: Kernel Stein discrepancies
KSD(P | |Q) = sup

g∈𝒢
∥𝔼X∼Q[𝒮P[g](X)]∥

Chwialkowski, K., Strathmann, H., & Gretton, A. (2016). A kernel test of goodness of fit. 
International Conference on Machine Learning, 2606–2615.

Liu, Q., Lee, J. D., & Jordan, M. I. (2016). A kernelized Stein discrepancy for goodness-of-fit tests 
and model evaluation. International Conference on Machine Learning, 276–284.
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Example 3: Kernel Stein discrepancies
KSD(P | |Q) = sup

g∈𝒢
∥𝔼X∼Q[𝒮P[g](X)]∥

Chwialkowski, K., Strathmann, H., & Gretton, A. (2016). A kernel test of goodness of fit. 
International Conference on Machine Learning, 2606–2615.

Liu, Q., Lee, J. D., & Jordan, M. I. (2016). A kernelized Stein discrepancy for goodness-of-fit tests 
and model evaluation. International Conference on Machine Learning, 276–284.

 is the Langevin Stein operator.𝒮P

𝒢 = {g = (g1, …, gd) ∈ ℋk : ∥v∥2 ≤ 1 where vi = ∥gi∥ℋk}

The most practical class as it can be evaluated in closed-form!



Stein’s method as a computational tool
Kernel Stein discrepancies



Reproducing kernels
• A reproducing kernel is any symmetric and positive-semidefinite function 

.k : 𝒳 × 𝒳 → ℝ

1. Symmetric means that for any , . 

2. Positive semi-definite means that for any  and , the Gram 
matrix  (where ) must be positive semidefinite.

x, x′ ∈ 𝒳 k(x, x′ ) = k(x′ , x)

x1, …, xn n ∈ ℕ
K ∈ ℝn×n Kij = k(xi, xj)

(In other words, it can only have nonnegative eigenvalues.) 
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.k : 𝒳 × 𝒳 → ℝ

1. Symmetric means that for any , . 

2. Positive semi-definite means that for any  and , the Gram 
matrix  (where ) must be positive semidefinite.

x, x′ ∈ 𝒳 k(x, x′ ) = k(x′ , x)

x1, …, xn n ∈ ℕ
K ∈ ℝn×n Kij = k(xi, xj)

(In other words, it can only have nonnegative eigenvalues.) 

One way to think about kernel is as measuring the similarity between points!
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Examples of kernels
• Example 1: Squared exponential (or Gaussian) kernel:

k(x, x′ ) = λ exp (−
∥x − x′ ∥2

2

l )
• Example 2: Inverse-multiquadric kernel:

k(x, x′ ) = λ (∥x − x′ ∥2
2 + c)− 1

2

• Example 3: Polynomial kernel

k(x, x′ ) = λ(c + x⊤x′ )p



Properties of kernels

• Many of the kernels we have seen so far only depend on  through 
. They are therefore called translation invariant. 

• They also all take the following form for some bounded , 
making them radial 

• All of these kernels are bounded, which is a super helpful property for most 
of what we will do.

x, x′ 

∥x − x′ ∥

ϕ : 𝒳 → ℝ+

k(x, x′ ) = λ2ϕ (−
∥x − x′ ∥2

l2 )
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Kernel hyperparameters

Varying amplitude parameter

∥x − x′ ∥

λϕ(∥x − x′ ∥)

[Garnett, 2023]

Varying lengthscale parameter

∥x − x′ ∥

ϕ(∥x − x′ ∥/l2)

• The parameter  is called the amplitude, whilst the parameter  is called the 
lengthscale.

λ l

k(x, x′ ) = λ2ϕ (−
∥x − x′ ∥2

l2 )
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Reproducing kernel Hilbert Spaces
• Let  be a Hilbert space of functions from  to  (i.e. a complete 

inner-product space).  

• We say that  is an RKHS if and only if it has a reproducing kernel; ie. a 
kernel which satisfies:

ℋk 𝒳 ℝ

ℋk

•  

•

∀x ∈ 𝒳, k( ⋅ , x) ∈ ℋk

∀x ∈ 𝒳, ∀f ∈ ℋk, ⟨ f, k( ⋅ , x)⟩ℋk
= f(x)

• Intuition (not fully rigorous): I like to think of RKHS functions as 
functions of the form:

f(x) =
n

∑
i=1

wik(x, xi)



Examples of RKHS
• Example 1: If we take an order-1 polynomial 

kernel, the RKHS is simply the space of 
straight lines!

[Garnett, 2023]

• Example 2: If we take a Gaussian or 
inverse-multi quadric kernel, the RKHS is a 
space of infinitely smooth function!
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may want to represent 
probability distributions as 
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• This is achieved through the 
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• Due to its nice properties, we 

may want to represent 
probability distributions as 
functions in an RKHS. 

• This is achieved through the 
kernel mean embedding:

μP(x) = ∫ k(x, y)p(y)dy

Working with functions is a lot easier than working with 
distributions… This is another convenient characterisation!!
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Maximum mean discrepancy
• For example, we can just compare two distributions based on the 

distance between their kernel mean embeddings. 

• This is called the maximum mean discrepancy (MMD)!
MMD!

MMD(P | |Q) = ∥μP − μQ∥ℋk

• This is actually an integral probability 
metric based on all functions of a fixed 
size in this RKHS! 

• Of course we often can’t compute the kernel 
mean embedding since it is an integral…



Stein RKHS
• We can use our favourite tool to make these embeddings tractable!

h(x) = 𝒮P[g](x) ∈ ℋkp

where  is another reproducing kernel.kp

• Consider  where each . Then:g(x) = (g1(x), …, gd(x)) gi(x) ∈ ℋk

• All the functions in  have mean zero under  by construction, 
and therefore we definitely have that:

ℋkp
P

μp(x) = ∫ kp(x, y)p(y)dx = 0 .



Kernel Stein discrepancies
KSD(P | |Q) = sup

g∈𝒢
∥𝔼X∼Q[𝒮P[g](X)]∥

• The Stein discrepancy with the RKHS  is equivalent to the the 
MMD with kernel !

ℋk
kp

Chwialkowski, K., Strathmann, H., & Gretton, A. (2016). A kernel test of goodness of fit. 
International Conference on Machine Learning, 2606–2615.

Liu, Q., Lee, J. D., & Jordan, M. I. (2016). A kernelized Stein discrepancy for goodness-of-fit tests 
and model evaluation. International Conference on Machine Learning, 276–284.



Expression for the Langevin KSD

kP(x, x′ ) = k(x, x′ )⟨∇xlog p(x), ∇x′ log p(x′ )⟩ + ⟨∇xk(x, x′ ), ∇x′ log p(x′ )⟩

+⟨∇x′ k(x, x′ ), ∇xlog p(x)⟩ + Tr(∇x ∇x′ k(x, x′ ))

KSD(P | |Qn) =
1
n2

n

∑
i,j=1

kP(xi, xj)

• The Stein discrepancy can be simplified to

• The function  is a Stein reproducing kernel (i.e. it is also a kernel!)kP



Expression for the Langevin KSD

kP(x, x′ ) = k(x, x′ )⟨∇xlog p(x), ∇x′ log p(x′ )⟩ + ⟨∇xk(x, x′ ), ∇x′ log p(x′ )⟩

+⟨∇x′ k(x, x′ ), ∇xlog p(x)⟩ + Tr(∇x ∇x′ k(x, x′ ))

KSD(P | |Qn) =
1
n2

n

∑
i,j=1

kP(xi, xj)

• The Stein discrepancy can be simplified to

Looks complicated but it’s all straightforward to compute!
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Kernel derivatives
• We can look at the example of the Gaussian kernel:

k(x, x′ ) = λ exp (−
∥x − x′ ∥2

2

l ) ∇xk(x, x′ ) = −
2λ(x − x′ )

l2
exp (−

∥x − x′ ∥2
2

l )

Tr(∇x ∇x′ k(x, x′ )) =
2λ (l2 − 2∑d

i=1 (xi − x′ i)2)
l4

exp (−
∥x − x′ ∥2

2

l )
This is indeed straightforward to compute!
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Computational complexity of the KSD

• The computational complexity of each  evaluation is .kP O(d)

• There are  evaluations of  in the KSD expression.O(n2) kP

KSD(P | |Qn) =
1
n2

n

∑
i, j=1

kP(xi, xj)

Total cost is !O(n2d)

kP(x, x′ ) = k(x, x′ )⟨∇x log p(x), ∇x′ log p(x′ )⟩ + ⟨∇xk(x, x′ ), ∇x′ log p(x′ )⟩
+⟨∇x′ k(x, x′ ), ∇x log p(x)⟩ + Tr(∇x ∇x′ k(x, x′ ))



Scalable Stein discrepancies

• It is possible to bring down the cost to linear (rather than quadratic) in 
 through very accurate approximations (i.e. random features). 

• When  is a posterior based on a lot of data points, the cost of each 
score function evaluation can be prohibitive. Approximations based on 
stochastic estimates of the score can be used in those cases.

n

P

Gorham, J., Raj, A., & Mackey, L. (2020). Stochastic Stein discrepancies. NeurIPS.

Huggins, J. H., & Mackey, L. (2018). Random feature Stein discrepancies. NeurIPS.

Jitkrittum, W., Xu, W., Szabo, Z., Fukumizu, K., & Gretton, A. (2017). A linear-time kernel 
goodness-of-fit test. NeurIPS.



U-statistic or V-statistic

KSD(P | |Qn) =
1
n2

n

∑
i, j=1

kP(xi, xj)

̂KSD (P | |Q) =
1

n(n − 1)

n

∑
i, j=1

kP(xi, xj)

V-statistic

U-statistic

• Interestingly, this is not the only way to approximate :KSD(P | |Q)



U-statistic or V-statistic

KSD(P | |Qn) =
1
n2

n

∑
i, j=1

kP(xi, xj)

̂KSD (P | |Q) =
1

n(n − 1)

n

∑
i, j=1

kP(xi, xj)

V-statistic

U-statistic

• The U-statistic is unbiased but has higher variance, whereas the V-
statistic is biased but has lower variance.

• Interestingly, this is not the only way to approximate :KSD(P | |Q)
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• What is Stein’s method, and why should you care…

• Computational tools based on Stein’s method.

• Some nice (new) algorithms!

We now have an amazing hammer and we 
can use it to hit pretty much all the nails in 
computational statistics.



Our nails…

Stein’s  
Method

Hypothesis testing

Monte Carlo  
Methods  

Gradient 
Flows

(Generalised) Bayesian Inference

Robust 
estimators

Parameter estimation

Measuring sample quality

control variates

Thinningimportance sampling



Our nails…

Stein’s  
Method

Hypothesis testing

Monte Carlo  
Methods  

Gradient 
Flows

(Generalised) Bayesian Inference

Robust 
estimators

Parameter estimation

Measuring sample quality

control variates

Thinningimportance sampling

…

…

…
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Focus of this course

• There are so many topics I could touch upon which I will unfortunately 
not have time to cover…. 

Algorithms Theory Large-scale experiments

• My aim is simply to give you some intuition for what can be done with 
Stein’s method, rather than an extensive guide.

• I will be biased towards topics on which I have myself worked…



Stein’s method as a computational tool
Hypothesis testing



Goodness-of-fit testing

• In goodness-of-fit testing, we want to answer questions such as:

“Do I have a good model for my observed data?”

“Are the distributional assumptions of my analysis reasonable”

• Given a distribution  and some observed data , this is 
formalised as:

P {xi}n
i=1 ∼ Q

H0 : P = Q
H1 : P ≠ Q



Testing with discrepancies

• Assume we have a “reasonable” notion of discrepancy/dissimilarity . 
Then a good way to check whether  holds is to compute:

D
H0

H0 : P = Q
H1 : P ≠ Q



Testing with discrepancies

• Assume we have a “reasonable” notion of discrepancy/dissimilarity . 
Then a good way to check whether  holds is to compute:

D
H0

H0 : P = Q
H1 : P ≠ Q

• If this is zero, we know that !P = Q
• If this is strictly greater than zero, we know that !P ≠ Q
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• Most existing work focuses on very simple ; e.g. Gaussian, Poisson, etc.. P
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Existing work

• Most existing work focuses on very simple ; e.g. Gaussian, Poisson, etc.. P

• The main reason that these consider only simple  is that the distance 
is otherwise infeasible to compute/estimate! 

P

 =  distance between CDFsD L∞ Kolmogorov-Smirnov test

 = weighted  between CDFsD L2 Anderson-Darling test
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Goodness of fit testing with kernels

• Sadly most of these existing tests are very limited in the sense that you 
have to find a new test for every distribution  you care about….P

Idea: Let’s use our hammer (the KSD) for goodness-of-fit testing!
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Goodness-of-fit testing with KSD

• In practice we do not observe  but only observe :Q Qn

H0 : P = Q
H1 : P ≠ Q

• We will therefore compute  instead of , which 
very conveniently turns out to be exactly what we can compute!

KSD(P | |Qn) KSD(P | |Q)



Accounting for finite data

• Since we are using  instead of , we do not have thatQn Q

H0 : P = Q
H1 : P ≠ Q

KSD(P | |Qn) ≠ 0 ⇒ P ≠ Q

• We must account for the fact that we have a finite amount of data .n



Accounting for finite data

• Since we are using  instead of , we do not have thatQn Q

H0 : P = Q
H1 : P ≠ Q

KSD(P | |Qn) ≠ 0 ⇒ P ≠ Q

• We must account for the fact that we have a finite amount of data .n

• However, we would still expect that 

KSD(P | |Qn) ≫ 0 ⇒ P ≠ Q
KSD(P | |Qn) ≈ 0 ⇒ P = Q



Test statistic
• To construct this test, we will therefore choose:

H0 : P = Q
H1 : P ≠ Q

Δ = nKSD(P | |Qn)2

• If  is larger than we would expect under the null, we will reject the null 
hypothesis, and otherwise we will not reject.

Δ

• In practice the p-values will be computed using a Wild bootstrap 
algorithm which approximates the distribution of  under :Δ H0

B = n
n

∑
i,j=1

WiWjkp(xi, xj) W1, …, Wn ∼ Rademacher



Kernel goodness-of-fit in practice

• Set level of the test to  (e.g. 0.05) 

• Calculate . 

• Obtain , the -quantile from 
the  bootstrap samples . 

• If  then reject, otherwise do not 
reject.

α
Δ = nKSD(P | |Qn)

cα (1 − α)
M B1, …, BM

Δ > cα

[Chwialkowski et al 2016 - slightly modified]

Δ

Δ

Quantile corresponding 
to our level

• Goodness-of-fit testing algorithm:

H0 : P = Q
H1 : P ≠ Q



• Consider some parametric family 
of models:

Composite goodness-of-fit

Key, O., Gretton, A., Briol, F-X. & Fernandez, T.. (2021). Composite goodness-of-fit tests with kernels. 
arXiv:2111.10275 (under review).
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• Consider some parametric family 
of models:

Composite goodness-of-fit

Key, O., Gretton, A., Briol, F-X. & Fernandez, T.. (2021). Composite goodness-of-fit tests with kernels. 
arXiv:2111.10275 (under review).

{Pθ : θ ∈ Θ}

H0 : ∃θ* such that Pθ* = Q
H1 : ∄θ* such that Pθ* = Q

• An interesting question could be:
“Is my parametric model misspecified?”
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• A key question in statistics is:

Overview: goodness-of-fit with Stein

Stein characterisations allow us to design goodness-of-fit 
tests for a very wide variety of models so long as  
is tractable!

∇xlog p(x)

• Sadly classical statistical tests cannot answer this question beyond very 
simple distributions  such as Gaussians or uniforms.P

“Are the distributional assumptions of my analysis reasonable”



Stein’s method as a computational tool
Parameter estimation and gen-Bayes



Minimum distance estimators

• In parameter estimation, we typically have a parametric family of 
distributions:

{Pθ : θ ∈ Θ}

• Given some data  , we would like to findx1, …, xn ∼ Q

θ* such that Pθ* = Q
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including maximum likelihood estimation and Bayes:
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log (
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∏
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Why discrepancies?

• We already have plenty of good ways to estimate parameters, 
including maximum likelihood estimation and Bayes:

arg max
θ∈Θ

log (
n

∏
i=1

pθ(xi)) π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ)

• These are even known to be optimal in some ways, but….

“What if the model/likelihood is misspecified?”

“What if these approaches are computationally intractable?”
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arg min
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D(Pθ | |Q)

• A natural approach is to use a minimum distance estimator:



Minimum distance estimators

arg min
θ∈Θ

D(Pθ | |Q)

• A natural approach is to use a minimum distance estimator:

• We are simply asking for the 
model  and the true data 
generating process  to be the 
same, or as similar as possible.

Pθ
Q
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Existing methods

arg min
θ∈Θ

D(Pθ | |Qn)arg min
θ∈Θ

D(Pθ | |Q)

• Of course, we do not have access to , but we have access to Q Qn

• Examples: 

 compares momentsD Method of moments

 is KL divergenceD Maximum likelihood
“morally”



A sketch of minimum distance 
estimation

arg min
θ∈Θ

D(Pθ | |Qn)

 is smallD(Pθ* | |Qn)  is largeD(Pθ1
| |Qn)
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More on existing methods
• Many discrepancies have been used in the literature, including the 

Wasserstein distance, total variation distance, Beta divergences, 
Gamma divergences, etc…

• There are typically two main questions to worry about: “Is this 
discrepancy computationally tractable?” and “What properties does 
this discrepancy have?”

• Example: are the 
distributions corresponding 
to the blue and red 
densities similar?

Answer: it depends on the discrepancy…



Minimum Stein discrepancy estimators

arg min
θ∈Θ

SD(Pθ | |Qn)
• We can use our favourite hammer on this nail:

Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., & Mackey, L. (2019). Minimum Stein discrepancy 
estimators. NeurIPS, 12964–12976.

• We will come back to these properties later on. In the meantime…



Minimum Stein discrepancy estimators

arg min
θ∈Θ

SD(Pθ | |Qn)
• We can use our favourite hammer on this nail:

• Examples: 

• We recover score-matching with the Hyvarinen divergence. 
• For those that are old enough to know what this is, we can also 

recover minimum probability flow or contrastive divergence…

Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., & Mackey, L. (2019). Minimum Stein discrepancy 
estimators. NeurIPS, 12964–12976.

• We will come back to these properties later on. In the meantime…
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pθ(xi)π(θ)

• In Bayesian Inference, we typically do inference for parameters 
using a posterior distribution:

• Generalised Bayesian Inference proposes to use instead:

π(θ |x1, …, xn) ∝ exp (−L(θ; x1, …, xn))π(θ)

where  is an empirical loss.L(θ; x1, …, xn)
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Generalised Bayesian Inference

π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ)

• In Bayesian Inference, we typically do inference for parameters 
using a posterior distribution:

• Generalised Bayesian Inference proposes to use instead:

π(θ |x1, …, xn) ∝ exp (−L(θ; x1, …, xn))π(θ)

where  is an empirical loss.L(θ; x1, …, xn)

Prior

Likelihood

Posterior

Prior

Loss

Generalised 
Posterior



Generalised Bayesian Inference with 
Stein Discrepancies

• A natural choice of loss function is to pick a discrepancy:

π(θ |x1, …, xn) ∝ exp (−nSD(Pθ | |Qn))π(θ)

i.e. L(θ; x1, …, xn) = nSD(Pθ, Qn)

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2022). Robust generalised Bayesian inference for intractable 
likelihoods. Journal of the Royal Statistical Society: Series B: (Statistical Methodology), 84(3), 997–1022.



Generalised Bayesian Inference with 
Stein Discrepancies

• A natural choice of loss function is to pick a discrepancy:

π(θ |x1, …, xn) ∝ exp (−nSD(Pθ | |Qn))π(θ)

i.e. L(θ; x1, …, xn) = nSD(Pθ, Qn)

Intuition: Our generalised posterior will have more mass in regions where 
 is small (or equivalently where  is large). This 

will typically happen close to the minimum Stein discrepancy estimator
SD(Pθ | |Qn) exp(−nSD(Pθ | |Qn))

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2022). Robust generalised Bayesian inference for intractable 
likelihoods. Journal of the Royal Statistical Society: Series B: (Statistical Methodology), 84(3), 997–1022.
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Why Stein discrepancies?

• A very reasonable question at this point is:

“Why Stein discrepancies? Why not anything else?”

• In turns out that they have two key properties:

1. Their computational tractability makes them straightforward to apply even 
when dealing with somewhat complex models. 

2. The generator approach gives us a lot of flexibility in terms of which 
operator to use, and hence how the discrepancies encode similarity…



Weighted discrepancies
• One property we might want is “outlier robustness”; i.e. a small 

number of outliers do not impact our estimator/inference procedure.
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Weighted discrepancies

DSM(P | |Q) := 𝔼X∼Q [∥w(X)(∇xlog p(X) − ∇xlog q(X))∥2
2]

DKSD2(P | |Q) := 𝔼X,X′ ∼Q [kp(X, X′ )] k(x, x′ ) = w(x)k̃(x, x′ )w(x′ )

• This can be achieved by weighting our favourite discrepancies:

• One property we might want is “outlier robustness”; i.e. a small 
number of outliers do not impact our estimator/inference procedure.

• In particular, we can choose weights which decrease the impact of data 
far away from the modes of the distribution.
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Robustness for KSD Bayes

Pθ = 𝒩(θ,1) Q = (1 − ϵ)𝒩(θ*,1) + ϵ𝒩(10,1)
= 1

• Consider the following toy setup with a location model:

w(x) = (1 + x2)− 1
2

Not robust! Robust!



Intractable likelihoods
• The second property relates to computational tractability. We 

have already discussed the fact that some models have 
intractable likelihoods:

pθ(x) =
p̃θ(x)
Cθ



Intractable likelihoods
• The second property relates to computational tractability. We 

have already discussed the fact that some models have 
intractable likelihoods:

pθ(x) =
p̃θ(x)
Cθ

Stein discrepancies are ideal for estimating their parameters!



Intractable likelihoods
• The second property relates to computational tractability. We 

have already discussed the fact that some models have 
intractable likelihoods:

pθ(x) =
p̃θ(x)
Cθ

Stein discrepancies are ideal for estimating their parameters!

• The situation is much worse for Bayes, as we get 
doubly intractable problems:

π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ) =
1
C

n

∏
i=1

p̃θ(xi)
Cθ

π(θ)



Intractable likelihoods
• The second property relates to computational tractability. We 

have already discussed the fact that some models have 
intractable likelihoods:

pθ(x) =
p̃θ(x)
Cθ

Stein discrepancies are ideal for estimating their parameters!

• The situation is much worse for Bayes, as we get 
doubly intractable problems:

π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ) =
1
C

n

∏
i=1

p̃θ(xi)
Cθ

π(θ)

Stein discrepancies remove only the worst constant (i.e.  but not )!Cθ C
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Stein discrepancies as quadratic forms
• Assume that you have a (natural) exponential family model:

pθ(x) ∝ exp(−T(x)⊤θ + b(θ) + h(x))

for some ,  and .T : ℝd → ℝp b : ℝp → ℝ h : ℝd → ℝ

• Key result: any squared Stein discrepancy based on a Langevin 
Stein operator is quadratic in :θ

SD2(Pθ | |Qn) = θ⊤Anθ + b⊤
n θ + cn

This works even when we do not know the normalisation constant!



Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a 

quadratic form?



Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a 

quadratic form?
The Gaussian location model!



Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a 

quadratic form?
The Gaussian location model!

• We therefore have a generalised posterior of the following form:

π(θ |x1, …, xn) ∝ exp (−θ⊤Anθ + b⊤
n θ + cn)π(θ)



Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a 

quadratic form?
The Gaussian location model!

• We therefore have a generalised posterior of the following form:

π(θ |x1, …, xn) ∝ exp (−θ⊤Anθ + b⊤
n θ + cn)π(θ)

Gaussian



Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a 

quadratic form?
The Gaussian location model!

• We therefore have a generalised posterior of the following form:

π(θ |x1, …, xn) ∝ exp (−θ⊤Anθ + b⊤
n θ + cn)π(θ)

Gaussian Gaussian???



Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a 

quadratic form?
The Gaussian location model!

• We therefore have a generalised posterior of the following form:

π(θ |x1, …, xn) ∝ exp (−θ⊤Anθ + b⊤
n θ + cn)π(θ)

Gaussian Gaussian???Gaussian!!



Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a 

quadratic form?
The Gaussian location model!

• We therefore have a generalised posterior of the following form:

π(θ |x1, …, xn) ∝ exp (−θ⊤Anθ + b⊤
n θ + cn)π(θ)

Gaussian Gaussian???Gaussian!!

We get conjugacy for all natural exponential family models even 
when we do not know their normalisation constant!



Protein signalling networks

pθ(x) ∝ exp −
d

∑
i=1

θi exp(xi) − ∑
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θi, j exp(xi)exp(xj)

Strength of interactions 
between proteins  and i j

Parameters: θi ≥ 0, θi, j ≥ 0



Protein signalling networks

pθ(x) ∝ exp −
d

∑
i=1

θi exp(xi) − ∑
i<j

θi, j exp(xi)exp(xj)

Strength of interactions 
between proteins  and i j

Parameters: θi ≥ 0, θi, j ≥ 0

This is an exponential family, so we can have conjugate (and robust) gen-Bayes!



Protein signalling networks
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Ising model

pθ(x) ∝ exp
1
θ

d

∑
i=1

∑
j∈𝒩i

xixj

Data space: , 𝒳 = {0,1}d n = 1000

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian inference for discrete intractable likelihood. 
Journal of the American Statistical Association, to Appear.



Ising model

pθ(x) ∝ exp
1
θ

d

∑
i=1

∑
j∈𝒩i

xixj

Data space: , 𝒳 = {0,1}d n = 1000

Computational cost:

Bayes: ??? DFD-Bayes: 540s

KSD-Bayes: 2353s Pseudo-Bayes: 1053s

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian inference for discrete intractable likelihood. 
Journal of the American Statistical Association, to Appear.
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pθ(x) ∝ exp
1
θ

d

∑
i=1

∑
j∈𝒩i

xixj

Data space: , 𝒳 = {0,1}d n = 1000

Computational cost:

Bayes: ??? DFD-Bayes: 540s

KSD-Bayes: 2353s Pseudo-Bayes: 1053s

Bayes is not feasible here due to double intractability!

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian inference for discrete intractable likelihood. 
Journal of the American Statistical Association, to Appear.



Ising model

pθ(x) ∝ exp
1
θ

d

∑
i=1

∑
j∈𝒩i

xixj

Data space: , 𝒳 = {0,1}d n = 1000

Computational cost:

Bayes: ??? DFD-Bayes: 540s

KSD-Bayes: 2353s Pseudo-Bayes: 1053s
Pseudo-Bayes uses the wrong model and so does not 
converge when we get more data…!

Bayes is not feasible here due to double intractability!

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian inference for discrete intractable likelihood. 
Journal of the American Statistical Association, to Appear.



Conway-Maxwell Poisson 
graphical model

pθ(x) ∝ exp
d

∑
i=1

θixi −
d

∑
i=1

∑
j∈𝒩i

θi,jxixj −
d

∑
i=1

log(xi!)

“Easy-ish”

“Very hard”

“Truth”



Bayesian online change-point detection

Altamirano, M., Briol, F.-X., & Knoblauch, J. (2023). Robust and scalable Bayesian online changepoint detection. ICML, 642–663.

Conjugacy and robustness can be helpful for much simpler likelihoods…
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Altamirano, M., Briol, F.-X., & Knoblauch, J. (2023). Robust and scalable Bayesian online changepoint detection. ICML, 642–663.

Conjugacy and robustness can be helpful for much simpler likelihoods…



Robust Gaussian process regression

Altamirano, M., Briol, F.-X., & Knoblauch, J. (2023). Robust and conjugate Gaussian process regression. arXiv:2311.00463.



Robust Gaussian process regression

Altamirano, M., Briol, F.-X., & Knoblauch, J. (2023). Robust and conjugate Gaussian process regression. arXiv:2311.00463.



Not Stein but still related….

Duran-Martin, G., Altamirano, M., Shestopaloff, A. Y., Knoblauch, J., Jones, M., Briol, F.-X., & Murphy, K. (2024). 
Outlier-robust Kalman filtering through generalised Bayes. (Under review)



Not Stein but still related….

Duran-Martin, G., Altamirano, M., Shestopaloff, A. Y., Knoblauch, J., Jones, M., Briol, F.-X., & Murphy, K. (2024). 
Outlier-robust Kalman filtering through generalised Bayes. (Under review)



• Parameter estimation is challenging in the following two 
setting: (i) model misspecification, (i) complex models leading 
to challenging computation.

Overview: parameter estimation and 
Bayes with Stein’s method

• Stein discrepancies can tackle these issues due to their 
computational tractability and their flexibility!



Stein’s method as a computational tool
Measuring sample quality
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Computational statistics with MCMC
• Suppose we are performing Bayesian inference and end up with some 

posterior distribution denoted . 

• The posterior is often intractable, and needs to be approximated 
through sampling. One such approach consists of running a Markov 
chain with invariant distribution .

P

P

• Ergodic theorems and central limit theorems can be used to justify this 
approach asymptotically (i.e. as ), but there are still many 
practical problems with this in practice…

n → ∞

This is called Markov chain Monte Carlo (MCMC)!
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Issues with MCMC

“Good MCMC” “Slow mixing” “Poor initialisation”

Question 1: Do we have a good MCMC sampler?
Question 2: Have we run the MCMC sampler for long enough?

The main problem is that we typically only see the red trajectory and not the orange contour lines…
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Trace-plots for MCMC

Uh oh… hasn’t mixed so well…Visually seems to be mixing… 
Now let me look at the other dimensions…

This is really not a scalable/rigorous approach….
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Other diagnostics for MCMC
• Another approach is to track the effective sample size:

ESS =
n

1 + ∑∞
k=1 ρk

Number of MCMC samples

Autocorrelation at lag k

• This is not always very reliable as a way of estimating how good 
our samples are as we need to estimate the autocorrelation. 

• Potential issues:

• It is also limited to MCMC, but as we will see shortly there are many 
other approaches for approximating a target with a point set!

• Is not valid for stochastic gradient MCMC or any other approximate 
MCMC methods where we do not necessarily target the right P
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Measuring sample quality

 D(P | |Qn)

Target distribution Particle approximation: Qn =
1
n

n

∑
i=1

δxi

• A natural approach would be to look at some discrepancy:

• This is indeed what is done to study convergence of MCMC at a theoretical 
level, in which case the discrepancy is the total variation distance. (You may 
have heard of concepts such as geometric ergodicity?)

This is completely useless as a practical tool since we cannot compute it!



Measuring sample quality with SDs

 ??SD(P | |Qn) → 0

Gorham, J., & Mackey, L. (2017). Measuring sample quality with kernels. ICML, 1292–1301.

Gorham, J., & Mackey, L. (2015). Measuring sample quality with Stein’s method. NeurIPS, 226–234.

Gorham, J., Duncan, A., Mackey, L., & Vollmer, S. (2019). Measuring sample quality with diffusions. Annals of 
Applied Probability, 29(5), 2884–2928.
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 ??SD(P | |Qn) → 0

Gorham, J., & Mackey, L. (2017). Measuring sample quality with kernels. ICML, 1292–1301.

Gorham, J., & Mackey, L. (2015). Measuring sample quality with Stein’s method. NeurIPS, 226–234.

Gorham, J., Duncan, A., Mackey, L., & Vollmer, S. (2019). Measuring sample quality with diffusions. Annals of 
Applied Probability, 29(5), 2884–2928.

• The graph Stein discrepancy and the KSD have been proposed for this task 
since they are both computable!  

• The former essentially always controls weak convergence, whilst the latter 
does so under certain conditions of the kernel.
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• Measuring the quality of a point set approximation of a target 
 distribution is really hard!P

Overview: measuring sample quality 
with Stein’s method

• A natural approach is to use a Stein discrepancy between that 
point set and the target:

SD(P | |Qn)
• This allows us to answer concretely many questions that were 

previously completely intractable from a computational 
viewpoint…!



Stein’s method as a computational tool
Deterministic approximations of probability 
distributions
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• Suppose we have a target distribution . 
• We would like a very good approximation 

of the form:

P

P ≈
1
n

n

∑
i=1

δxi

• The main question is: 

“How should we pick the points ?”x1, …, xn
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• There is lots of research on this question when 
….P = Unif([0,1]d)

Monte Carlo vs quasi-Monte Carlo

• The simplest option would be Monte Carlo; i.e. to 
sample iid observation from .P

• This is wasteful because it leaves lots of gaps or 
clustered points..

Gap

Cluster

• Instead, a zoo of deterministic point sets or 
sequences have been proposed under the name 
Quasi-Monte Carlo.
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• QMC points aim to do the following:

High-level idea behind QMC

D (P,
1
n

n

∑
i=1

δxi) → 0 n → ∞at a “fast” rate as

• “Fast” typically means at least O ( log(n)α

n )
•  is typically the star discrepancy.D
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• The star discrepancy is a function of a dataset which 
tells us how spread out these point are over the domain.

The star discrepancy

Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
= sup

B=[0,B1)×…×[0,Bd)

#points in B
n

− Vol(B)

• It can also be thought of as a measure of dissimilarity between our dataset and a !U([0,1]d)

Sup over boxes anchored at origin!

Example Box 1Dataset

Example Box 2 Example Box 3
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• The star discrepancy is a convenient choice since we have that:

Low-discrepancy sequences

A major limitation of this approach is that you can only approximate !P = Unif([0,1]d)

𝔼X∼P[ f (X )] −
1
n

n

∑
i=1

f (xi) ≤ V( f ) × Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
Integration error Complexity of 

the function
Star discrepancy

• Low discrepancy sequences include well known constructions such as Sobol and 
Halton sequences, for which we therefore have guarantees of fast convergence of 
the integration error to zero!



• Choosing another discrepancy (i.e. our favourite hammer) can 
lead to more practical algorithms:

Stein Points

Chen, W. Y., Mackey, L., Gorham, J., Briol, F-X., & Oates, C. J. (2018). Stein points. ICML, 1320–1350.

Chen, W. Y., Barp, A., Briol, F-X., Gorham, J., Girolami, M., Mackey, L., & Oates, C. J. (2019). Stein point Markov chain 
Monte Carlo. ICML, 1737–1767.

arg min
x1,…,xn∈ℝd

KSD (P
1
n

n

∑
i=1

δxi)
• This is still a very high-dimensional and non-convex optimisation 

problem, so we need to introduce some approximation….
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• We choose points one at a time to 
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Greedy Stein Points

• Thanks to the nice expression for the KSD, 
this simply becomes:

xn ∈ arg min
x∈ℝd

KSD (P
1
n

n−1

∑
i=1

δxi
+

1
n

δx)

Example: 2d-Gaussian.
= arg min

x∈ℝd

kP(x, x)
2

+
n−1

∑
i=1

kP(xi, x)
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Greedy Stein Points on Gaussian

𝔼X∼P[ f(X)] = ?

f(x) = sin(x1) + sin(x2) P = N(0,I2×2)
Convergence is much 
faster for Stein Points 
than Monte Carlo!



Stein Points for complex targets
SP-MCMCMCMC

• One of the main advantages of Stein points is 
that we can approximate any distribution  for 
which we have a suitable Stein characterisation! 

• This includes complex probabilistic models, or 
Bayesian posterior distributions!

P

https://github.com/wilson-ye-chen/stein_points

https://github.com/wilson-ye-chen/sp-mcmc
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σ2
t = θ1 + θ2y2

t−1 + (1 − θ2)σ2
t−1

• Consider some Bayesian posterior for the following 
time-series model:

• Stein points give much smaller 
Wasserstein distance 
approximation than MCMC!
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Example: IGARCH posterior

yt = σtϵt, ϵt ∼ N(0,1)

σ2
t = θ1 + θ2y2

t−1 + (1 − θ2)σ2
t−1

• Consider some Bayesian posterior for the following 
time-series model:

• Advanced versions of Stein 
Points can do much better…

Log # evaluation of p
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Stein’s method as a computational tool
Stein Variational Gradient Descent
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[Credit: Qiang Liu (UT Austin) 
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~qlearning/project.html?
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• We are still interested in approximating some 
distribution .P
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Particle-based approximations

[Credit: Qiang Liu (UT Austin) 
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~qlearning/project.html?
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• We are still interested in approximating some 
distribution .P

Φg(x) = x + ϵg(x)

• The idea is to define a map, and to 
recursively transport particles through this 
map towards :P

• This time, we start with some particles which 
we then move towards P.
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https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D


Particle-based approximations

[Credit: Qiang Liu (UT Austin) 
https://www.cs.utexas.edu/
~qlearning/project.html?
p=svgd]

• We are still interested in approximating some 
distribution .P

Φg(x) = x + ϵg(x)

• The idea is to define a map, and to 
recursively transport particles through this 
map towards :P

• This time, we start with some particles which 
we then move towards P.

Step-size Direction of moveCurrent 
Position

https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
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SVGD as transport of measure

max
g∈𝒢 {−

d
dϵ

KL (Φg
#Q | |P)

ϵ=0 } = KSD(P | |Q)

• The algorithm mostly relies on this identity:

where Φg(x) = x + ϵg(x)
The rate of decrease of the 
KL divergence under the 
transport map Φg

• The best transport map is therefore the function:
g*Q,P( ⋅ ) ∝ 𝔼X∼Q[∇log p(X)k(X, ⋅ ) + ∇xk(X, ⋅ )]

Once again we are using our hammer….
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Stein variational gradient descent (SVGD)
• We should therefore move as follows:

Φ*(x) = x+ϵg*Q,P(x) = x+ϵ𝔼X∼Q[∇log p(X)k(X, x) + ∇xk(X, x)]

xt+1
i ← xt

i+ϵ
1
n

n

∑
j=1

∇log p(xt
j )(1 × k(xt

j , xt
i )) + ∇xj

k(xt
j , xt

i )

for every iteration .t = 1,2,…, T

• In practice, we do not have  but a particle approximation:Q

Pushes particles towards 
regions of high prob under P

Pushes particles away from 
one another (“repulsive force”)



SVGD in practice

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=SVGD

http://www.apple.com/uk
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=SVGD


Stein’s method as a computational tool
Thinning MCMC



Thinning MCMC

p(y* |x*, x1, …, xn, y1, …, yn)

= ∫Θ
p(y* |x*, θ)p(θ |x1, …, xn, y1, …, yn)dθ

• Suppose we would like to compute some 
predictive distribution:



Thinning MCMC

p(y* |x*, x1, …, xn, y1, …, yn)

= ∫Θ
p(y* |x*, θ)p(θ |x1, …, xn, y1, …, yn)dθ

Expensive likelihood Posterior distribution 
(approximated with samples)

• Suppose we would like to compute some 
predictive distribution:



Thinning MCMC

p(y* |x*, x1, …, xn, y1, …, yn)

= ∫Θ
p(y* |x*, θ)p(θ |x1, …, xn, y1, …, yn)dθ

Expensive likelihood Posterior distribution 
(approximated with samples)

• Suppose we would like to compute some 
predictive distribution:

• Clearly we do not want to have a very long chain as this will otherwise 
be very expensive!



Thinning MCMC

p(y* |x*, x1, …, xn, y1, …, yn)

= ∫Θ
p(y* |x*, θ)p(θ |x1, …, xn, y1, …, yn)dθ

Expensive likelihood Posterior distribution 
(approximated with samples)

• Suppose we would like to compute some 
predictive distribution:

• Clearly we do not want to have a very long chain as this will otherwise 
be very expensive!

• Solution: Thinning our MCMC sampler!
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• …but the independence can be quite wasteful as we might 
end up with some very similar samples!



Thinning MCMC
• The simplest method is independent sub-sampling. 

• …but the independence can be quite wasteful as we might 
end up with some very similar samples!

We ideally want an approximation 
where points are far from one another 
but concentrated in region of high 
probability mass…



Stein thinning

arg min
{xi}n
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KSD (P
1
n
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∑
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δxi)

Riabiz, M., Chen, W., Cockayne, J., Swietach, P., Niederer, S. A., Mackey, L., & Oates, C. J. (2022). Optimal 
thinning of MCMC output. JRSSB, 84(4), 1059–1081.
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Stein thinning

arg min
{xi}n

i=1⊂{yi}N
i=1

KSD (P
1
n

n

∑
i=1

δxi)

Riabiz, M., Chen, W., Cockayne, J., Swietach, P., Niederer, S. A., Mackey, L., & Oates, C. J. (2022). Optimal 
thinning of MCMC output. JRSSB, 84(4), 1059–1081.

• Let’s use our favourite hammer on this nail:

• Similarly to Stein points, this is usually intractable so we select 
one point at a time.

Original approximation of PSub-sample



Stein thinning in practice

[https://en.wikipedia.org/wiki/File:Stein_Thinning_of_MCMC_output.webm]

https://en.wikipedia.org/wiki/File:Stein_Thinning_of_MCMC_output.webm


Stein’s method as a computational tool
Importance sampling



Importance sampling
• Sometimes we want to sample from  but cannot do so…P



Importance sampling
• Sometimes we want to sample from  but cannot do so…P

• Importance sampling proposes to sample from , then weight the samples 
to correct from the fact that we are sampling from the wrong distribution

P′ 



Importance sampling
• Sometimes we want to sample from  but cannot do so…P

• Importance sampling proposes to sample from , then weight the samples 
to correct from the fact that we are sampling from the wrong distribution

P′ 

Target distribution P



Importance sampling
• Sometimes we want to sample from  but cannot do so…P

• Importance sampling proposes to sample from , then weight the samples 
to correct from the fact that we are sampling from the wrong distribution

P′ 

Target distribution P Importance distribution



Importance sampling
• Sometimes we want to sample from  but cannot do so…P

• Importance sampling proposes to sample from , then weight the samples 
to correct from the fact that we are sampling from the wrong distribution

P′ 

Target distribution P Importance distribution IIID realisations from 
importance distribution



Importance sampling
• Sometimes we want to sample from  but cannot do so…P

• Importance sampling proposes to sample from , then weight the samples 
to correct from the fact that we are sampling from the wrong distribution

P′ 

Target distribution P Importance distribution IIID realisations from 
importance distribution

Weighted samples from 
target distribution
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Importance sampling

= ∫ f(x)
p(x)
p′ (x)

p′ (x)dx ≈
1
n

n

∑
i=1

w(xi)f(xi)𝔼X∼P[ f(X )] = ∫ f(x)p(x)dx

• To find the appropriate weights, we can use the following derivation:

= 𝔼X∼P′ [w(X )f(X )]

w(x) =
p(x)
p′ (x)

• This is at the core of many algorithms in computational statistics such as 
sequential Monte Carlo, variational inference, simulation-based inference, etc..

• Question: “This choice of weights gives us good Monte Carlo estimators, but 
is it the best possible way to weight our samples?”
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Stein importance sampling

Liu, Q., & Lee, J. D. (2017). Black-box importance sampling. AISTATS, 952–961.

Wang, C., Chen, W., Kanagawa, H., & Oates, C. J. (2023). Stein -Importance Sampling. NeurIPS.Π

arg min
w1,…,wn≥0,∑n

i=1 wi=1
KSD (P

n

∑
i=1

wiδxi)Stage 2:

Stage 1: Sample  from some proposal x1, …, xn P′ 

Gives a stable set of weights, and exact 
estimation for constant functions

• A standard approach for the proposal  is to use a Markov chain which approximates 
the target  (or close enough).

P′ 

P



Stein importance sampling with 
different kernels

[Wang, 2023]
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• We have seen many approaches (importance sampling, thinning, 
deterministic, gradient flows) to getting a good point set 
approximation of a target:

Overview: point set approximation with 
Stein’s method

P ≈
n

∑
i=1

wiδxi

Having a computable Stein discrepancy which can be used 
for most ’s with unnormalised densities is a real asset here!P



Stein’s method as a computational tool
Control variates for Monte Carlo
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Monte Carlo methods

n (𝔼X∼P[ f(X )] −
1
n

n

∑
i=1

f(xi)) → N(0,Var[ f ])

• To know how well this will perform, we can look at the central limit theorem:

Var[ f ] = 𝔼X∼P [( f(X ) − 𝔼X∼P[ f(X )])2]If  is “complicated” where  assigns a 
lot of mass, this will be large!
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• The above is for standard Monte Carlo, but similar results hold for MCMC, QMC, etc…

• We have already discussed extensively the need for good estimators of:

𝔼X∼P[ f(X)] ≈
1
n

n

∑
i=1

f(xi)
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The control variate trick

= 𝔼X∼P[ f(X)]+𝔼X∼P[h(X)] − 𝔼X∼P[h(X)] = 𝔼X∼P[ f(X) − h(X)] + c

• Suppose we have a function  for which  and  is known. h 𝔼X∼P[h(X)] = c c

𝔼X∼P[ f(X)]

• Then we could rewrite our integral as follows:

• We therefore have a choice of estimator:

𝔼X∼P[ f(X)] ≈
1
n

n

∑
i=1

f(xi) 𝔼X∼P[ f(X)] ≈
1
n

n

∑
i=1

( f(xi) − h(xi)) + c

Estimator 1: Monte Carlo: Estimator 2: Control Variate

The control variate (CV)!
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A sketch of control variate 
estimators

Integrand f Step 1: Find control variate   
with known 

h
𝔼X∼P[h(X )]

Step 2: Estimate  
with a Monte Carlo estimator

𝔼X∼P[ f(X ) − h(X )]

Turns out that if we choose  carefully, then the Monte Carlo estimator of   
will be much more accurate than the Monte Carlo estimator of 

h f − h
f



Existing control variates
• Using the CLT, we see that the accuracy of control variate estimators depend on

Var[ f − h]

• This leads to a few key questions:

“How do we guarantee that ?”Var[ f − h] ≪ Var[ f ]

“Can we choose  to minimise ?”h Var[ f − h]

“How do we guarantee that we know the integral of ?”h
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• Problem: In general it is really hard to find a function  with known 
.

h : ℝd → ℝ
EX∼P[h(X)]

• Existing methods focus on simple distributions  such as a Gaussian or a 
uniform and simple , such as a polynomial.  

• This is severely limiting for computational statistics or machine learning….

P
h

Question: What are we supposed to do when  is more complicated?P
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Stein control variates

hθ(x) = 𝒮P[gθ](x) + θ0 𝔼X∼P[hθ(X)] = 𝔼X∼P[𝒮P[gθ](X)] + θ0 = θ0

•  can be a family of polynomials, neural networks, an RKHS, etc… so long as 
this family is a subset of the corresponding Stein class !
{gθ : θ ∈ Θ}

𝒢P

• Given the focus of this course, it should be obvious that we can pick:

• Initial work in Bayesian computation mostly used the equivalent of polynomial-based Stein 
control variates without realising they were using Stein!

Mira, A., Solgi, R., & Imparato, D. (2013). Zero variance Markov chain Monte Carlo for Bayesian estimators. Statistics and 
Computing, 23(5), 653–662.

Papamarkou, T., Mira, A., & Girolami, M. (2014). Zero variance differential geometric Markov chain Monte Carlo algorithms. 
Bayesian Analysis, 9(1), 97–128.



Elements of Stein RKHS

[Oates et al 2017, JRSSB]
Oates, C. J., Girolami, M., & Chopin, N. (2017). Control functionals for Monte Carlo integration. 

Journal of the Royal Statistical Society B: Statistical Methodology, 79(3), 695–718.

Oates, C. J., Cockayne, J., Briol, F.-X., & Girolami, M. (2019). Convergence rates for a class of 
estimators based on Stein’s identity. Bernoulli, 25(2), 1141–1159.

• Recall that we can take an RKHS  and create a new one by 
applying a Stein operator to functions in the space:

ℋk

𝒮P[g](x), g ∈ ℋd
k

• This leads to the RKHS with kernel  given by:kP

kp(x, x′ ) = 𝒮x
P𝒮x′ 

P[k](x, x′ )

South, L. F., Karvonen, T., Nemeth, C., Girolami, M., & Oates, C. J. (2022). Semi-exact control functionals from Sard’s method. 
Biometrika, 109, 351–367.



Stein Neural Networks

Ott, K., Tiemann, M., Hennig, P., & Briol, F.-X. (2023). Bayesian numerical integration with neural networks. UAI, 1606–1617.

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2021). Scalable control variates for Monte Carlo methods via 
stochastic optimization. Proceedings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.

Sun, Z., Oates, C. J., & Briol, F.-X. (2023). Meta-learning control variates: Variance reduction with limited data. UAI, 2047–2057.

• We can also take our favourite (sufficiently smooth) neural network 
 and apply a Stein operator to the output.  

• To use the language in this field, we can add a “Stein layer”.
gθ : ℝd → ℝd
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Ott, K., Tiemann, M., Hennig, P., & Briol, F.-X. (2023). Bayesian numerical integration with neural networks. UAI, 1606–1617.

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2021). Scalable control variates for Monte Carlo methods via 
stochastic optimization. Proceedings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.

Sun, Z., Oates, C. J., & Briol, F.-X. (2023). Meta-learning control variates: Variance reduction with limited data. UAI, 2047–2057.

• We can also take our favourite (sufficiently smooth) neural network 
 and apply a Stein operator to the output.  

• To use the language in this field, we can add a “Stein layer”.
gθ : ℝd → ℝd

Output is in ℝ

Input is in ℝd

Stein layer 𝒮p[]
gθ(x) ∈ ℝd
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Stein CVs as empirical risk minimisation

J(θ) = Var[ f − hθ] = Var[ f − 𝒮P[gθ](x) − θ0]

• Clearly a natural objective to choose our control variate is:

Jm(θ) = ̂Varm [ f − hθ]

• Since this objective is intractable, we can approximate it with samples:

=
1
m

m

∑
j=1

( f(xj) − hθ(xj))2

̂θm = arg min
θ∈Θ

Jm(θ)
• We then choose our control variate as follows:

h ̂θm
(x)
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Linear Stein CVs

• We note that Stein operators are usually linear operators, meaning that

θ ↦ hθ(x)
will be linear so long as  is also linear!θ ↦ gθ(x)

• This is the case for polynomials or for kernels, but not for neural networks.

• The great advantage of linear Stein CVs is that  becomes a 
quadratic function in  and can hence be solved through a linear system 
(we are essentially doing least squares)!

θ ↦ Jm(θ)
θ



Stochastic optimisation for linear Stein 
CVs: a toy problem

• Of course another approach is to use gradient-based optimisation, such as 
stochastic gradient descent…

f(x) = x1 + … + xd

P = 𝒩(0,Id)

Half of the samples were 
used for learning the CV, the 
other half for the estimator

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2021). Scalable control variates for Monte Carlo methods via stochastic optimization. 
Proceedings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.



Stochastic optimisation for linear Stein 
CVs: a toy problem

• Of course another approach is to use gradient-based optimisation, such as 
stochastic gradient descent…

Solving linear systemStochastic optimisation

f(x) = x1 + … + xd

P = 𝒩(0,Id)

Half of the samples were 
used for learning the CV, the 
other half for the estimator

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2021). Scalable control variates for Monte Carlo methods via stochastic optimization. 
Proceedings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.



Posterior inference for ODE system

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2021). Scalable control variates for Monte Carlo methods via stochastic optimization. 
Proceedings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.

·x = αx − βxy ·y = δxy − γy

(Half of the samples were used for 
learning the CV, the other half for 
the estimator)

Computing expectations under the posterior for  given 
some observations of the following Lotka-Volterra ODE system:

(α, β, δ, γ)



Multiple related integrals

Sun, Z., Oates, C. J., & Briol, F.-X. (2023). Meta-learning control variates: Variance reduction with limited data. UAI, 2047–2057.

Sun, Z., Barp, A., & Briol, F.-X. (2023). Vector-valued control variates. ICML, 32819–32846.

𝔼X∼P1
[ f1(X)], …, 𝔼X∼PT
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• In some situations, we have to estimate several 
integrals either sequentially or simultaneously:
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Multiple related integrals

Sun, Z., Oates, C. J., & Briol, F.-X. (2023). Meta-learning control variates: Variance reduction with limited data. UAI, 2047–2057.

Sun, Z., Barp, A., & Briol, F.-X. (2023). Vector-valued control variates. ICML, 32819–32846.

𝔼X∼P1
[ f1(X)], …, 𝔼X∼PT

[ fT(X)]

• In some situations, we have to estimate several 
integrals either sequentially or simultaneously:

• These could be estimated separately, but sharing information across tasks can 
significantly improve the accuracy.

• Thankfully Stein’s method can be extended to vector-valued functions to 
create control variates suitable for tackling this task!
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• The accuracy of Monte Carlo methods can be significantly 
improved through control variates, but finding a good control 
variate can be very hard. 

Overview: numerical integration with 
Stein’s method

Stein’s method allows us to create very flexible classes of 
control variates for a very broad variety of applications!
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A computational tool beyond 
Euclidean spaces…

• Recall our favourite Stein operator:

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

• This is only valid when the domain/data space is …!𝒳 = ℝd

• But often we want to do statistics with data which is in ; e.g. 
categorical data, count data, manifold-valued data, functional data…

ℝd

None of the tools we have seen so far work….
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Stein on bounded subsets of 
Euclidean space

𝔼X∼P [𝒯[g](X)] = ∫ℝd

𝒯[g](x)p(x)dx = 0

• The defining property of the Langevin Stein operator is:

• But what if instead we have a model defined only on positive values:

∫ℝd
+

𝒯[g](x)p(x)dx ≠ 0

• There are plenty of cases where our models/data does not have full 
support, but where  and this is a strict subset.𝒳 ⊂ ℝd



Stein on bounded subsets of 
Euclidean space

Oates, C. J., Cockayne, J., Briol, F.-X., & Girolami, M. (2019). Convergence rates for a class of estimators 
based on Stein’s identity. Bernoulli, 25(2), 1141–1159.

Williams, D. J., & Liu, S. (2023). Approximate Stein Classes for truncated density estimation. International 
Conference on Machine Learning.

• A straightforward solution in this case is to use a modified 
RKHS as the Stein space:

k̃(x, x′ ) = δ(x)k(x, x′ )δ(x′ )

δ(x) = 0 for x ∈ ∂𝒳
• Where we enforce that the kernel vanishes on the boundary:



Stein on discrete spaces

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2024+). Generalised Bayesian inference for discrete 
intractable likelihood. JASA (to appear).

Shi, J., Zhou, Y., Hwang, J., Titsias, M. K., & Mackey, L. (2022). Gradient estimation with discrete Stein 
operators. NeurIPS.

Yang, J., Liu, Q., Rao, V., & Neville, J. (2018). Goodness-of-fit testing for discrete distributions via Stein 
discrepancy. ICML.

[Matsubara et al., 2024+]

SP[g](x) = ⟨ ∇−p(x)
p(x)

, g(x)⟩ + ⟨∇+, g(x)⟩𝒳 = 𝒮1 × … × 𝒮d
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Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2024+). Generalised Bayesian inference for discrete 
intractable likelihood. JASA (to appear).

Shi, J., Zhou, Y., Hwang, J., Titsias, M. K., & Mackey, L. (2022). Gradient estimation with discrete Stein 
operators. NeurIPS.

Yang, J., Liu, Q., Rao, V., & Neville, J. (2018). Goodness-of-fit testing for discrete distributions via Stein 
discrepancy. ICML.

[Matsubara et al., 2024+]

SP[g](x) = ⟨ ∇−p(x)
p(x)

, g(x)⟩ + ⟨∇+, g(x)⟩

∇+g(x) =
g(x1+) − g(x)

…
g(xd+) − g(x)

∇−g(x) =
g(x1−) − g(x)

…
g(xd−) − g(x)

𝒳 = 𝒮1 × … × 𝒮d

 is a countable ordered set𝒮i



Stein on manifolds

Xu, W., & Matsuda, T. (2020). A Stein goodness-of-fit test for directional distributions. AISTATS.

Xu, W., & Matsuda, T. (2021). Interpretable Stein goodness-of-fit tests on Riemannian manifolds. ICML.

Barp, A., Oates, C. J., Porcu, E., & Girolami, M. (2022). A Riemannian–Stein kernel method. Bernoulli, 
28(4), 2181–2208.

[Barp et al., 2022]

• Sometimes we also want to consider data on manifolds 
(e.g. spheres, positive definite matrices, etc…)



Stein on manifolds

Xu, W., & Matsuda, T. (2020). A Stein goodness-of-fit test for directional distributions. AISTATS.

Xu, W., & Matsuda, T. (2021). Interpretable Stein goodness-of-fit tests on Riemannian manifolds. ICML.

Barp, A., Oates, C. J., Porcu, E., & Girolami, M. (2022). A Riemannian–Stein kernel method. Bernoulli, 
28(4), 2181–2208.

[Barp et al., 2022]

• Sometimes we also want to consider data on manifolds 
(e.g. spheres, positive definite matrices, etc…)

• Once again the generator approach comes to the rescue: 
we just need a Markov process defined on this space…. 

•  There are abundant choices available from physics and 
computational chemistry literatures!
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Wynne, G., Kasprzak, M., & Duncan, A. B. (2024+). A spectral representation of kernel Stein discrepancy with 
application to goodness-of-fit tests for measures on infinite dimensional Hilbert spaces. Bernoulli (to appear).

•  is a space of function (e.g. time series, spatial measurements, etc…).𝒳

• Once again the generator approach comes to the rescue - we can use the 
generator of a Wiener process with a carefully selected kernel.
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in May 2006

[Kokoska, 2017]



Stein on graphs

Xu, W., & Reinert, G. (2021). A Stein goodness of fit test for exponential random graph models. AISTATS.

Xu, W., & Reinert, G. (2022). AgraSSt: Approximate graph Stein statistics for interpretable assessment of 
implicit graph generators. NeurIPS.

[Xu & Reinert 2022]

• A lot less straightforward to write on a 
slide, but is based on the generator 
approach of Barbour… 

• The exact operator is based on 
Glauber dynamics which allows you to 
simulate on the space of graphs.



Stein’s method as a computational tool
The end



Outline (updated)

• What is Stein’s method, and why should you care…

• Computational tools based on Stein’s method.

• Some nice (new) algorithms!
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