
Stein’s method as a computational tool

Dr François-Xavier Briol
Department of Statistical Science
University College London

[+ many more who don’t fit on slide…]

A summary of this course

A summary of this course

We started with two authors back in 2018 then things got out of hands….

The birth of Stein’s method (1972)

Prof. Charles Stein
(Stanford)

Prof. Louis Chen (NUS)

The birth of Stein’s method (1972)

1972-2015: most of the focus is on probability theory of theoretical statistics.

Prof. Charles Stein
(Stanford)

Prof. Louis Chen (NUS)

Stein goes computational (2015-…)
arXiv 2014 - JRSSB 2017 NeurIPS 2015

We will now discuss why Stein characterisations are so useful…

Stein goes computational (2015-…)
arXiv 2014 - JRSSB 2017

ICML 2016 ICML 2016

NeurIPS 2015

We will now discuss why Stein characterisations are so useful…

Some exciting new algorithms!

Stein’s
Method

Some exciting new algorithms!

Stein’s
Method

Hypothesis testing

Some exciting new algorithms!

Stein’s
Method

Hypothesis testing

Monte Carlo
Methods

Some exciting new algorithms!

Stein’s
Method

Hypothesis testing

Monte Carlo
Methods

Parameter estimation

Some exciting new algorithms!

Stein’s
Method

Hypothesis testing

Monte Carlo
Methods

Gradient
Flows

Parameter estimation

Some exciting new algorithms!

Stein’s
Method

Hypothesis testing

Monte Carlo
Methods

Gradient
Flows

(Generalised) Bayesian Inference

Robust
estimators

Parameter estimation

Some exciting new algorithms!

Stein’s
Method

Hypothesis testing

Monte Carlo
Methods

Gradient
Flows

(Generalised) Bayesian Inference

Robust
estimators

Parameter estimation

Measuring sample quality

control variates

Thinningimportance sampling

Some exciting new algorithms!

Stein’s
Method

Hypothesis testing

Monte Carlo
Methods

Gradient
Flows

(Generalised) Bayesian Inference

Robust
estimators

Parameter estimation

Measuring sample quality

control variates

Thinningimportance sampling

…

…

…

… …

…

…

Outline

• What is Stein’s method, and why should you care…

• Computational tools based on Stein’s method.

• Some nice (new) algorithms!

Stein’s method as a computational tool
Stein characterisations

Uncertainty through distributions
• Our job, as statisticians, is to help make sense of the world around us by

collecting and analysis data, and making conclusions from this.

• This is hard as we typically only have limited data, and we therefore need to be
careful in how we represent and communicate uncertainty!

• In statistics, we typically represent uncertainty through probability distributions.

Uncertainty through distributions
• Our job, as statisticians, is to help make sense of the world around us by

collecting and analysis data, and making conclusions from this.

• This is hard as we typically only have limited data, and we therefore need to be
careful in how we represent and communicate uncertainty!

• Our language for representing uncertainty is therefore a language for
representing probability distributions.

Some popular characterisations

• Our language for representing uncertainty is therefore a language for
representing probability distributions.

Some popular characterisations

• We have many different ways of representing a probability distribution :P

F(x) = 𝔼X∼P [1{X≤x}]CDF:

• Our language for representing uncertainty is therefore a language for
representing probability distributions.

Some popular characterisations

• We have many different ways of representing a probability distribution :P

F(x) = 𝔼X∼P [1{X≤x}]CDF: p(x) =
dF(x)

dx
PDF:

• Our language for representing uncertainty is therefore a language for
representing probability distributions.

Some popular characterisations

• We have many different ways of representing a probability distribution :P

F(x) = 𝔼X∼P [1{X≤x}]CDF: p(x) =
dF(x)

dx
PDF:

M(t) = 𝔼X∼P[exp(tX)]MGF:

• Our language for representing uncertainty is therefore a language for
representing probability distributions.

Some popular characterisations

• We have many different ways of representing a probability distribution :P

F(x) = 𝔼X∼P [1{X≤x}]CDF: p(x) =
dF(x)

dx
PDF:

M(t) = 𝔼X∼P[exp(tX)]MGF: φ(t) = 𝔼X∼P[exp(itX)]CF:

…

Difference between characterisations

• Q: “Why do we need so many ways of describing probability
distributions?”

Difference between characterisations

• Q: “Why do we need so many ways of describing probability
distributions?”

• A: They each give us a mathematical language to work with
probability distributions, and sometime expressing yourself in one
language is easier than doing so with another.

Characterisations in probability theory

Characterisations in probability theory
• Example 1: Cumulative distribution functions are great

for computing tail probabilities ,
but really terrible for representing multivariate
distributions!

P(X ≥ x) = 1 − F(x)

• Example 2: Characteristic functions are the expectation of a complex
function and so not very interpretable, but their properties make the proof
of the central limit theorem much easier!

n (1
n

n

∑
i=1

Xi − 𝔼X∼P[X]) → 𝒩(0,σ2)

Characterisations in probability theory
• Example 1: Cumulative distribution functions are great

for computing tail probabilities ,
but really terrible for representing multivariate
distributions!

P(X ≥ x) = 1 − F(x)

Characterisations in statistics and
machine learning

• Example 1: The moment generating function
 is convenient for hypothesis testing or

parameter estimation:
M(t)

𝔼X∼P[Xn] =
dnM(t)

dtn
t=0

Characterisations in statistics and
machine learning

• Example 1: The moment generating function
 is convenient for hypothesis testing or

parameter estimation:
M(t)

𝔼X∼P[Xn] =
dnM(t)

dtn
t=0

• We can check if by checking whether moments of
 are close to those of !

{xi}n
i=1 ∼ P

{xi}n
i=1 P

Characterisations in statistics and
machine learning

• Example 1: The moment generating function
 is convenient for hypothesis testing or

parameter estimation:
M(t)

𝔼X∼P[Xn] =
dnM(t)

dtn
t=0

• We can check if by checking whether moments of
 are close to those of !

{xi}n
i=1 ∼ P

{xi}n
i=1 P

• We will now see yet another characterisation….

• A Stein characterisation for is a pair such thatP (𝒮P, 𝒢P)

Stein characterisation

Q = P ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

• A Stein characterisation for is a pair such thatP (𝒮P, 𝒢P)

Stein characterisation

Q = P ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

Stein operator

Stein class

• A Stein characterisation for is a pair such thatP (𝒮P, 𝒢P)

Stein characterisation

Q = P ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

Stein operator

Stein class

• A Stein characterisation for is a pair such thatP (𝒮P, 𝒢P)

Stein characterisation

Q = P ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

• In other words, you are now representing with an entire family
of functions with some peculiar property:

P

{h : h(x) = 𝒮P[g](x), g ∈ 𝒢P}

Stein operator

Stein class

• A Stein characterisation for is a pair such thatP (𝒮P, 𝒢P)

Stein characterisation

Q = P ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

• In other words, you are now representing with an entire family
of functions with some peculiar property:

P

{h : h(x) = 𝒮P[g](x), g ∈ 𝒢P}

Stein operator

Stein class

• (At this point I want to clarify I am not a sadistic mathematician….
We will see why shortly, but first lets see some examples…)

Characterising a 𝒩(0,σ2)

p(x) =
1

2πσ
exp (−

x2

2σ2)

• At some point in your BSc/MSc/PhD, you have probably come
across the many characterisations of a Gaussian:

Characterising a 𝒩(0,σ2)

p(x) =
1

2πσ
exp (−

x2

2σ2) F(x) =
1
2

1 + Erf (x

2σ)

• At some point in your BSc/MSc/PhD, you have probably come
across the many characterisations of a Gaussian:

Characterising a 𝒩(0,σ2)

p(x) =
1

2πσ
exp (−

x2

2σ2) F(x) =
1
2

1 + Erf (x

2σ)
M(t) = exp (σ2t2

2)

• At some point in your BSc/MSc/PhD, you have probably come
across the many characterisations of a Gaussian:

Characterising a 𝒩(0,σ2)

p(x) =
1

2πσ
exp (−

x2

2σ2) F(x) =
1
2

1 + Erf (x

2σ)
M(t) = exp (σ2t2

2) φ(t) = exp (−
σ2t2

2)

• At some point in your BSc/MSc/PhD, you have probably come
across the many characterisations of a Gaussian:

Characterising a 𝒩(0,σ2)

p(x) =
1

2πσ
exp (−

x2

2σ2) F(x) =
1
2

1 + Erf (x

2σ)
M(t) = exp (σ2t2

2) φ(t) = exp (−
σ2t2

2)

• At some point in your BSc/MSc/PhD, you have probably come
across the many characterisations of a Gaussian:

• We will now add a new one…

• Recall the general form of a Stein characterisation as a pair :(𝒮P, 𝒢P)

Stein characterisation for a 𝒩(0,σ2)

Q = 𝒩(0,σ2) ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

• Recall the general form of a Stein characterisation as a pair :(𝒮P, 𝒢P)

Stein characterisation for a 𝒩(0,σ2)

Q = 𝒩(0,σ2) ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

𝒮P[g](x) := σ2g′ (x) − xg(x)

𝒢P := {g : ℝd → ℝ |g almost diff. & ∫ |g′ (x) |p(x)dx < ∞}
• For , one such pair isP = 𝒩(0,σ2)

Illustration for a first function

σ2 = 1, n = 106,
{xi}n

i=1 ∼ P = 𝒩(0,σ2)

P = 𝒩(0,1)

Illustration for a first function

σ2 = 1, n = 106,
{xi}n

i=1 ∼ P = 𝒩(0,σ2)

1
n

n

∑
i=1

g(xi) ≈ 3.616
Arbitrary function in .
Unknown mean…

𝒢P

P = 𝒩(0,1)

Illustration for a first function

σ2 = 1, n = 106,
{xi}n

i=1 ∼ P = 𝒩(0,σ2)

1
n

n

∑
i=1

𝒮P[g](xi) ≈ 0.007

Mean zero function!

1
n

n

∑
i=1

g(xi) ≈ 3.616
Arbitrary function in .
Unknown mean…

𝒢P

P = 𝒩(0,1)

Illustration for a second function

σ2 = 1, n = 106,
{xi}n

i=1 ∼ P = 𝒩(0,σ2)

P = 𝒩(0,1)

Illustration for a second function

σ2 = 1, n = 106,
{xi}n

i=1 ∼ P = 𝒩(0,σ2)

1
n

n

∑
i=1

g(xi) ≈ 1.298
Arbitrary function in .
Unknown mean…

𝒢P

P = 𝒩(0,1)

Illustration for a second function

σ2 = 1, n = 106,
{xi}n

i=1 ∼ P = 𝒩(0,σ2)

1
n

n

∑
i=1

𝒮P[g](xi) ≈ 0.002

Mean zero function!

1
n

n

∑
i=1

g(xi) ≈ 1.298
Arbitrary function in .
Unknown mean…

𝒢P

P = 𝒩(0,1)

Illustration for a second function

σ2 = 1, n = 106,
{xi}n

i=1 ∼ P = 𝒩(0,σ2)

1
n

n

∑
i=1

𝒮P[g](xi) ≈ 0.002

Mean zero function!

1
n

n

∑
i=1

g(xi) ≈ 1.298
Arbitrary function in .
Unknown mean…

𝒢P

Not differentiable but almost differentiable…
We can make many many functions have mean zero!

P = 𝒩(0,1)

Mean zero only against P though!
{xi}n

i=1 ∼ Q = 𝒩(1,1) ≠ P
1
n

n

∑
i=1

𝒮P[g](xi) ≈ − 1.661

P = 𝒩(0,1)

Mean zero only against P though!
{xi}n

i=1 ∼ Q = 𝒩(1,1) ≠ P
1
n

n

∑
i=1

𝒮P[g](xi) ≈ − 1.661

P = 𝒩(0,1)

{xi}n
i=1 ∼ Q = 𝒩(0,9) ≠ P

1
n

n

∑
i=1

𝒮P[g](xi) ≈ − 2.170

Mean zero only against P though!
{xi}n

i=1 ∼ Q = 𝒩(1,1) ≠ P
1
n

n

∑
i=1

𝒮P[g](xi) ≈ − 1.661

P = 𝒩(0,1)

{xi}n
i=1 ∼ Q = 𝒩(0,9) ≠ P

1
n

n

∑
i=1

𝒮P[g](xi) ≈ − 2.170

We have a characterisation!

• One last time to make sure you remember it, a Stein
characterisation for is a pair such thatP (𝒮P, 𝒢P)

Stein characterisation

Q = P ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

• One last time to make sure you remember it, a Stein
characterisation for is a pair such thatP (𝒮P, 𝒢P)

Stein characterisation

Q = P ⇔ 𝔼X∼Q[𝒮P[g](X)] = 0 ∀g ∈ 𝒢P

Any questions??

• Some might be more computationally
convenient than others.

• Some might be easier to manipulate…

• This book has 350+ pages on characterising
Gaussian distributions in different ways, and
how this can help for theory…

Stein characterisations are not unique!

Stein characterisations for other
distributions

[https://sites.google.com/site/steinsmethod]

Prof. Yvik Swan (ULB)

https://sites.google.com/site/steinsmethod

Stein’s method as a computational tool
Why Stein? Part I: Intractable integrals

• At this point, we have a new characterisation (i.e. mathematical
language!) to represent distributions.

Why Stein characterisations?

• At this point, we have a new characterisation (i.e. mathematical
language!) to represent distributions.

Why Stein characterisations?

• BUT it is seemingly much more complicated!!

• Instead of a single function, we now have (infinitely) many…..

• At this point, we have a new characterisation (i.e. mathematical
language!) to represent distributions.

Why Stein characterisations?

• BUT it is seemingly much more complicated!!

• Instead of a single function, we now have (infinitely) many…..

The key point is that all of these functions have mean
zero under a distribution of interest, which is super useful
from a computational viewpoint!

• Let . One of the main computational challenges encountered in
statististics and machine learning is to have to compute:

𝒳 ⊆ ℝd

A key challenge in computational
statistics

𝔼X∼P[f(X)] = ∫𝒳
f(x)p(x)dx = ??

• Let . One of the main computational challenges encountered in
statististics and machine learning is to have to compute:

𝒳 ⊆ ℝd

A key challenge in computational
statistics

𝔼X∼P[f(X)] = ∫𝒳
f(x)p(x)dx = ??

• This is a really hard problem when:
• The problem is high-dimensional (i.e. is large).

• The function is complicated and/or expensive.

• The distribution P is complex/multi-modal and/or
cannot be evaluated point wise.

d
f : 𝒳 → ℝ

p(x)

Examples in Bayesian statistics

𝔼X∼P[f(X)] = ∫𝒳
f(x)p(x)dx = ??

Examples in Bayesian statistics

𝔼X∼P[f(X)] = ∫𝒳
f(x)p(x)dx = ??

1. Posterior moments: is some unknown parameter of our
model. for some , is a posterior density.

x
f(x) = xl l ∈ ℕ p(x)

Examples in Bayesian statistics

𝔼X∼P[f(X)] = ∫𝒳
f(x)p(x)dx = ??

1. Posterior moments: is some unknown parameter of our
model. for some , is a posterior density.

x
f(x) = xl l ∈ ℕ p(x)

2. Model evidence: is some unknown parameter of our model.
 is the likelihood, is a prior density.

x
f(x) p(x)

Examples in frequentist statistics

𝔼X∼P[f(X)] = ∫𝒳
f(x)p(x)dx = ??

1. Marginalisation: Our likelihood could be based on some
unobserved variables (nuisance parameters) which need to be
integrated out.

Examples in frequentist statistics

𝔼X∼P[f(X)] = ∫𝒳
f(x)p(x)dx = ??

1. Marginalisation: Our likelihood could be based on some
unobserved variables (nuisance parameters) which need to be
integrated out.

2. Unnormalised likelihoods: Sometimes we only have access to a
likelihood up to a normalisation constant, which is the integral of the
unnormalised part (e.g. graphical models, models on manifolds,
deep exponential family models).

Examples in frequentist statistics

𝔼X∼P[f(X)] = ∫𝒳
f(x)p(x)dx = ??

• Clearly if we have that can be written asf

Why Stein characterisations:
Intractable integrals

f(x) = 𝒮P[g](x) + C for some 𝒮P, g ∈ 𝒢P, C ∈ ℝ

• Clearly if we have that can be written asf

Why Stein characterisations:
Intractable integrals

f(x) = 𝒮P[g](x) + C for some 𝒮P, g ∈ 𝒢P, C ∈ ℝ

𝔼X∼P[f(X)] = 𝔼X∼P[𝒮P[g](x)] + 𝔼X∼P[C] = C
• Then we can compute this integral/expectation in closed form:

• Clearly if we have that can be written asf

Why Stein characterisations:
Intractable integrals

f(x) = 𝒮P[g](x) + C for some 𝒮P, g ∈ 𝒢P, C ∈ ℝ

𝔼X∼P[f(X)] = 𝔼X∼P[𝒮P[g](x)] + 𝔼X∼P[C] = C
• Then we can compute this integral/expectation in closed form:

Known!

• Clearly if we have that can be written asf

Why Stein characterisations:
Intractable integrals

f(x) = 𝒮P[g](x) + C for some 𝒮P, g ∈ 𝒢P, C ∈ ℝ

𝔼X∼P[f(X)] = 𝔼X∼P[𝒮P[g](x)] + 𝔼X∼P[C] = C
• Then we can compute this integral/expectation in closed form:

• The flexibility in makes this not too unlikely!
• A key trick is therefore to replace our intractable integrals with integrals

that we can compute exactly.

𝒮P, g, C

Known!

Stein’s method as a computational tool
Why Stein? Part II: Intractable densities

• Our first motivation for Stein characterisations was for calculating
intractable integrals.

• But equally important is the case where our distribution is not
very tractable in the sense that we only know its unnormalised
density:

Why Stein characterisations:
Complex probability distributions

p(x) =
p̃(x)
C

• Our first motivation for Stein characterisations was for calculating
intractable integrals.

• But equally important is the case where our distribution is not
very tractable in the sense that we only know its unnormalised
density:

Why Stein characterisations:
Complex probability distributions

p(x) =
p̃(x)
C

Can evaluate

• Our first motivation for Stein characterisations was for calculating
intractable integrals.

• But equally important is the case where our distribution is not
very tractable in the sense that we only know its unnormalised
density:

Why Stein characterisations:
Complex probability distributions

p(x) =
p̃(x)
C

Can evaluate

Cannot evaluate…

• Our first motivation for Stein characterisations was for calculating
intractable integrals.

• But equally important is the case where our distribution is not
very tractable in the sense that we only know its unnormalised
density:

Why Stein characterisations:
Complex probability distributions

p(x) =
p̃(x)
C

Can evaluate

Cannot evaluate…
Cannot evaluate…

• Suppose we have a prior , and iid observations from a
distribution with density . Then the posterior is:

p(θ) n
p(x |θ)

Characterisation for a complicated
posterior distribution?

p(θ |x1, …, xn) =
1
C

n

∏
i=1

p(xi |θ)p(θ)

• Suppose we have a prior , and iid observations from a
distribution with density . Then the posterior is:

p(θ) n
p(x |θ)

Characterisation for a complicated
posterior distribution?

p(θ |x1, …, xn) =
1
C

n

∏
i=1

p(xi |θ)p(θ)

C = ∫Θ

n

∏
i=1

p(xi |θ)p(θ)dθ

• Suppose we have a prior , and iid observations from a
distribution with density . Then the posterior is:

p(θ) n
p(x |θ)

Characterisation for a complicated
posterior distribution?

p(θ |x1, …, xn) =
1
C

n

∏
i=1

p(xi |θ)p(θ)

?F(x)

C = ∫Θ

n

∏
i=1

p(xi |θ)p(θ)dθ

• Suppose we have a prior , and iid observations from a
distribution with density . Then the posterior is:

p(θ) n
p(x |θ)

Characterisation for a complicated
posterior distribution?

p(θ |x1, …, xn) =
1
C

n

∏
i=1

p(xi |θ)p(θ)

?F(x) ?M(t)

C = ∫Θ

n

∏
i=1

p(xi |θ)p(θ)dθ

• Suppose we have a prior , and iid observations from a
distribution with density . Then the posterior is:

p(θ) n
p(x |θ)

Characterisation for a complicated
posterior distribution?

p(θ |x1, …, xn) =
1
C

n

∏
i=1

p(xi |θ)p(θ)

?F(x) ?M(t) ?φ(t)

C = ∫Θ

n

∏
i=1

p(xi |θ)p(θ)dθ

• Suppose we have a prior , and iid observations from a
distribution with density . Then the posterior is:

p(θ) n
p(x |θ)

Characterisation for a complicated
posterior distribution?

p(θ |x1, …, xn) =
1
C

n

∏
i=1

p(xi |θ)p(θ)

?F(x) ?M(t) ?φ(t)

All characterisations are intractable!

C = ∫Θ

n

∏
i=1

p(xi |θ)p(θ)dθ

• Restricted Boltzmann Machine (i.e. ‘simple and shallow’ ML model):

Characterisation for machine
learning models?

p(x) =
1
C ∑

h∈{−1,1}dh

exp (x⊤Bh + b⊤h + c⊤x −
1
2

∥x∥2
2)

• Restricted Boltzmann Machine (i.e. ‘simple and shallow’ ML model):

Characterisation for machine
learning models?

p(x) =
1
C ∑

h∈{−1,1}dh

exp (x⊤Bh + b⊤h + c⊤x −
1
2

∥x∥2
2)

?F(x)

• Restricted Boltzmann Machine (i.e. ‘simple and shallow’ ML model):

Characterisation for machine
learning models?

p(x) =
1
C ∑

h∈{−1,1}dh

exp (x⊤Bh + b⊤h + c⊤x −
1
2

∥x∥2
2)

?F(x) ?M(t)

• Restricted Boltzmann Machine (i.e. ‘simple and shallow’ ML model):

Characterisation for machine
learning models?

p(x) =
1
C ∑

h∈{−1,1}dh

exp (x⊤Bh + b⊤h + c⊤x −
1
2

∥x∥2
2)

?F(x) ?M(t) ?φ(t)

• Restricted Boltzmann Machine (i.e. ‘simple and shallow’ ML model):

Characterisation for machine
learning models?

p(x) =
1
C ∑

h∈{−1,1}dh

exp (x⊤Bh + b⊤h + c⊤x −
1
2

∥x∥2
2)

?F(x) ?M(t) ?φ(t)

All characterisations are intractable!

• Since we are not able to characterise these distributions in a
computationally tractable way, we cannot answer most basic
questions of interest to statisticians!

Implications

• Since we are not able to characterise these distributions in a
computationally tractable way, we cannot answer most basic
questions of interest to statisticians!

Implications

“Is a good model for our data?”P

• Since we are not able to characterise these distributions in a
computationally tractable way, we cannot answer most basic
questions of interest to statisticians!

Implications

“Is a good model for our data?”P

“What is the probability of observing an extreme event?”

• Since we are not able to characterise these distributions in a
computationally tractable way, we cannot answer most basic
questions of interest to statisticians!

Implications

“Is a good model for our data?”P

“What is the probability of observing an extreme event?”

“What is the expected value of the important summary statistic under ?”f(x) P

• Since we are not able to characterise these distributions in a
computationally tractable way, we cannot answer most basic
questions of interest to statisticians!

Implications

“Is a good model for our data?”P

“What is the probability of observing an extreme event?”

“What is the expected value of the important summary statistic under ?”f(x) P

Thankfully, this is another case where Stein characterisations shine!
The main reason is that and can be obtained without
knowledge of normalisation constants (more on this shortly).

𝒮P 𝒢P

Stein’s method as a computational tool
The generator approach to Stein operators

• So far, I have shown you a simple Stein characterisation for the
distribution.

𝒩(0,σ2)

Finding Stein characterisations

• So far, I have shown you a simple Stein characterisation for the
distribution.

𝒩(0,σ2)

Finding Stein characterisations

• That’s cute, but what about these more complex models…?

• So far, I have shown you a simple Stein characterisation for the
distribution.

𝒩(0,σ2)

Finding Stein characterisations

• That’s cute, but what about these more complex models…?

• One of the main aim of theoretical research on Stein’s method is to find a
convenient recipe to discover Stein characterisations.

• So far, I have shown you a simple Stein characterisation for the
distribution.

𝒩(0,σ2)

Finding Stein characterisations

• That’s cute, but what about these more complex models…?

• One of the main aim of theoretical research on Stein’s method is to find a
convenient recipe to discover Stein characterisations.

Your favourite
 distribution P Stein characterisation

???

• So far, I have shown you a simple Stein characterisation for the
distribution.

𝒩(0,σ2)

Finding Stein characterisations

• That’s cute, but what about these more complex models…?

• One of the main aim of theoretical research on Stein’s method is to find a
convenient recipe to discover Stein characterisations.

Your favourite
 distribution P Stein characterisation

???

• Since this is hard, we will just follow what serious mathematicians have
previously proposed…

• Suppose is a (sufficiently regular) vector-valued function
. The Langevin Stein operator is given by:

g
g : ℝd → ℝd

The Langevin Stein operator

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

• Suppose is a (sufficiently regular) vector-valued function
. The Langevin Stein operator is given by:

g
g : ℝd → ℝd

The Langevin Stein operator

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

g(x) =

g1(x)
g2(x)

⋮
gd(x)

• Suppose is a (sufficiently regular) vector-valued function
. The Langevin Stein operator is given by:

g
g : ℝd → ℝd

The Langevin Stein operator

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

g(x) =

g1(x)
g2(x)

⋮
gd(x)

∇log p(x) =

∂ log p(x)
∂x1

⋮
∂ log p(x)

∂xd

• Suppose is a (sufficiently regular) vector-valued function
. The Langevin Stein operator is given by:

g
g : ℝd → ℝd

The Langevin Stein operator

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

d

∑
j=1

∂gj(x)
∂xj

g(x) =

g1(x)
g2(x)

⋮
gd(x)

∇log p(x) =

∂ log p(x)
∂x1

⋮
∂ log p(x)

∂xd

Recovering our operator for N(0,σ2)

• Take and d = 1 p(x) =
1

2πσ
exp (−

x2

2σ2)

Recovering our operator for N(0,σ2)

• Take and d = 1 p(x) =
1

2πσ
exp (−

x2

2σ2) ∇xlog p(x) = −
x
σ2

Recovering our operator for N(0,σ2)

• Take and d = 1 p(x) =
1

2πσ
exp (−

x2

2σ2) ∇xlog p(x) = −
x
σ2

• Hence:
𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩ = −

x
σ2

g(x) + g′ (x)

Recovering our operator for N(0,σ2)

• Take and d = 1 p(x) =
1

2πσ
exp (−

x2

2σ2) ∇xlog p(x) = −
x
σ2

• Hence:
𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩ = −

x
σ2

g(x) + g′ (x)

• Before, we had… . 𝒮P[g](x) := σ2g′ (x) − xg(x)

Recovering our operator for N(0,σ2)

• Take and d = 1 p(x) =
1

2πσ
exp (−

x2

2σ2) ∇xlog p(x) = −
x
σ2

• Hence:
𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩ = −

x
σ2

g(x) + g′ (x)

i.e. !!𝒮P[g](x) = σ2𝒯[g](x)

• Before, we had… . 𝒮P[g](x) := σ2g′ (x) − xg(x)

• Recall the problem of unnormalised densities:

Why this operator?

p(x) =
p̃(x)
C

• Recall the problem of unnormalised densities:

Why this operator?

p(x) =
p̃(x)
C

• This is not a problem for score functions…

• Recall the problem of unnormalised densities:

Why this operator?

∇xlog p(x) = ∇xlog (p̃(x)
C)

p(x) =
p̃(x)
C

• This is not a problem for score functions…

• Recall the problem of unnormalised densities:

Why this operator?

∇xlog p(x) = ∇xlog (p̃(x)
C)

p(x) =
p̃(x)
C

• This is not a problem for score functions…

= ∇xlog p̃(x) − ∇xlog C

• Recall the problem of unnormalised densities:

Why this operator?

∇xlog p(x) = ∇xlog (p̃(x)
C)

p(x) =
p̃(x)
C

• This is not a problem for score functions…

= ∇xlog p̃(x) − ∇xlog C = ∇xlog p̃(x)

• Recall the problem of unnormalised densities:

Why this operator?

∇xlog p(x) = ∇xlog (p̃(x)
C)

p(x) =
p̃(x)
C

• This is not a problem for score functions…

= ∇xlog p̃(x) − ∇xlog C = ∇xlog p̃(x)

Tractable!!

Intractable!

• The Langevin operator is therefore ideal for unnormalised densities:

Operators based on the score

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

= ⟨∇xlog p̃(x), g(x)⟩ + ⟨∇, g(x)⟩

• The Langevin operator is therefore ideal for unnormalised densities:

Operators based on the score

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

= ⟨∇xlog p̃(x), g(x)⟩ + ⟨∇, g(x)⟩

• It is however not the only Stein operator based on score functions
(recall that Stein characterisations are not unique!).

• The Langevin Stein operator is an example of Stein
operator derived through the generator approach.

The generator approach

Prof. A. Barbour
(U. Zurich)

• The Langevin Stein operator is an example of Stein
operator derived through the generator approach.

The generator approach

Prof. A. Barbour
(U. Zurich)

• High-level idea: Construct a Markov chain/process with
invariant distribution the distribution you would like to
characterise.

P

• The Langevin Stein operator is an example of Stein
operator derived through the generator approach.

The generator approach

Prof. A. Barbour
(U. Zurich)

• High-level idea: Construct a Markov chain/process with
invariant distribution the distribution you would like to
characterise.

P

• One representation of a Markov chain is through its
infinitesimal generator.

Infinitesimal generator = Stein operator

The diffusion Stein operator
• Suppose is a (sufficiently regular) vector-valued function

 and is a (nice) matrix-valued function
. The diffusion Stein operator is given by:

g
g : ℝd → ℝd m
m : ℝd → ℝd×d

𝒯diff[g](x) := ⟨m(x)⊤ ∇xlog p(x), g(x)⟩ + ⟨∇, m(x)g(x)⟩

The diffusion Stein operator
• Suppose is a (sufficiently regular) vector-valued function

 and is a (nice) matrix-valued function
. The diffusion Stein operator is given by:

g
g : ℝd → ℝd m
m : ℝd → ℝd×d

𝒯diff[g](x) := ⟨m(x)⊤ ∇xlog p(x), g(x)⟩ + ⟨∇, m(x)g(x)⟩

Generator for pre-conditioned Langevin diffusions!

The diffusion Stein operator

• We recover the Langevin Stein operator when :m(x) = Id

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

• Suppose is a (sufficiently regular) vector-valued function
 and is a (nice) matrix-valued function

. The diffusion Stein operator is given by:

g
g : ℝd → ℝd m
m : ℝd → ℝd×d

𝒯diff[g](x) := ⟨m(x)⊤ ∇xlog p(x), g(x)⟩ + ⟨∇, m(x)g(x)⟩

Generator for pre-conditioned Langevin diffusions!

Summary
• We have a new mathematical language (i.e. characterisation) to

work with probability distributions.

Summary
• We have a new mathematical language (i.e. characterisation) to

work with probability distributions.

• This new characterisation is quite a bit more complicated than
what we are used to as it is represented through a pair.

(𝒮P, 𝒢P)

Summary
• We have a new mathematical language (i.e. characterisation) to

work with probability distributions.

• This new characterisation is quite a bit more complicated than
what we are used to as it is represented through a pair.

(𝒮P, 𝒢P)
However, it is easy to find such operators/characterisation for very
complex distribution (including posteriors or complex ML models)!

Summary
• We have a new mathematical language (i.e. characterisation) to

work with probability distributions.

• This new characterisation is quite a bit more complicated than
what we are used to as it is represented through a pair.

(𝒮P, 𝒢P)
However, it is easy to find such operators/characterisation for very
complex distribution (including posteriors or complex ML models)!

• What should we do with our new tool?

Outline (updated)

• What is Stein’s method, and why should you care…

• Computational tools based on Stein’s method.

• Some nice (new) algorithms!

Stein’s method as a computational tool
Stein discrepancies

• One thing we might want to use our tool for is comparing distributions.

Discrepancies

• One thing we might want to use our tool for is comparing distributions.

Discrepancies

• One idea would be to construct some notion of dissimilarity/
discrepancy between two distributions based on our
characterisation:

P, Q

• One thing we might want to use our tool for is comparing distributions.

Discrepancies

• One idea would be to construct some notion of dissimilarity/
discrepancy between two distributions based on our
characterisation:

P, Q

• One limitation of most existing discrepancies is stats/ML is that they
are not computable for complex .P, Q

• A very popular class of discrepancies in statistics and ML are integral
probability metrics (IPMs):

Integral probability metrics

D(P, Q) = sup
h∈ℋ

|𝔼X∼P[h(X)] − 𝔼X∼Q[h(X)] |

• A very popular class of discrepancies in statistics and ML are integral
probability metrics (IPMs):

Integral probability metrics

D(P, Q) = sup
h∈ℋ

|𝔼X∼P[h(X)] − 𝔼X∼Q[h(X)] |

• If , then we are just comparing the means of & .ℋ = {h(x) = x} P Q

• A very popular class of discrepancies in statistics and ML are integral
probability metrics (IPMs):

Integral probability metrics

D(P, Q) = sup
h∈ℋ

|𝔼X∼P[h(X)] − 𝔼X∼Q[h(X)] |

• If , then we are just comparing the means of & .ℋ = {h(x) = x} P Q
• If are all functions with Lipschitz constant less than 1, we recover the

1-Wasserstein distance
ℋ

• A very popular class of discrepancies in statistics and ML are integral
probability metrics (IPMs):

Integral probability metrics

D(P, Q) = sup
h∈ℋ

|𝔼X∼P[h(X)] − 𝔼X∼Q[h(X)] |

• If , then we are just comparing the means of & .ℋ = {h(x) = x} P Q
• If are all functions with Lipschitz constant less than 1, we recover the

1-Wasserstein distance
ℋ

• If are all bounded functions with maximum at 1, we recover the total
variation distance.

ℋ

• A very popular class of discrepancies in statistics and ML are integral
probability metrics (IPMs):

Integral probability metrics

D(P, Q) = sup
h∈ℋ

|𝔼X∼P[h(X)] − 𝔼X∼Q[h(X)] |

• If , then we are just comparing the means of & .ℋ = {h(x) = x} P Q
• If are all functions with Lipschitz constant less than 1, we recover the

1-Wasserstein distance
ℋ

• If are all bounded functions with maximum at 1, we recover the total
variation distance.

ℋ

Hard to compute!

A new class of IPMs from Stein
• Suppose we now want to consider functions of the form:

ℋ = {h : h(x) = 𝒮P[g](x), g ∈ 𝒢P}

A new class of IPMs from Stein
• Suppose we now want to consider functions of the form:

D(P, Q) = sup
h∈ℋ

|𝔼X∼P[h(X)] − 𝔼X∼Q[h(X)] |

• Then the expression simplifies:

ℋ = {h : h(x) = 𝒮P[g](x), g ∈ 𝒢P}

A new class of IPMs from Stein
• Suppose we now want to consider functions of the form:

D(P, Q) = sup
h∈ℋ

|𝔼X∼P[h(X)] − 𝔼X∼Q[h(X)] |

• Then the expression simplifies:

ℋ = {h : h(x) = 𝒮P[g](x), g ∈ 𝒢P}

= sup
g∈𝒢P

|𝔼X∼P[𝒮P[g](X)] − 𝔼X∼Q[𝒮P[g](X)] |

A new class of IPMs from Stein
• Suppose we now want to consider functions of the form:

D(P, Q) = sup
h∈ℋ

|𝔼X∼P[h(X)] − 𝔼X∼Q[h(X)] |

• Then the expression simplifies:

ℋ = {h : h(x) = 𝒮P[g](x), g ∈ 𝒢P}

= sup
g∈𝒢P

|𝔼X∼P[𝒮P[g](X)] − 𝔼X∼Q[𝒮P[g](X)] |

= sup
g∈𝒢P

|𝔼X∼Q[𝒮P[g](X)] | We use our key property
that our functions
integrate to zero under P

• A Stein discrepancy (SD) is a measure of dissimilarity between and :P Q

Stein discrepancy

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

• A Stein discrepancy (SD) is a measure of dissimilarity between and :P Q

Stein discrepancy

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

We do not need to be the whole of , and we will often
take it to only be a subset: .

𝒢 𝒢P
𝒢 ⊆ 𝒢P

• A Stein discrepancy (SD) is a measure of dissimilarity between and :P Q

Stein discrepancy

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

If we find that at least one such that
, then we know !

g ∈ 𝒢
𝔼X∼Q[𝒮P[g](X)] ≠ 0 Q ≠ P

We do not need to be the whole of , and we will often
take it to only be a subset: .

𝒢 𝒢P
𝒢 ⊆ 𝒢P

• Question 1: What properties does this measure of dissimilarity have?

• Question 2: When can we actually compute this?

• Question 3: What can we use this measure of dissimilarity for?

Stein discrepancy

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

Q1: What properties does this have?

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

Q1: What properties does this have?

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

If is large enough and , then we know
that (i.e. it is a statistical divergence)

𝒢 SD(P | |Q) = 0
Q = P

Q1: What properties does this have?

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

If is large enough and , then we know
that (i.e. it is a statistical divergence)

𝒢 SD(P | |Q) = 0
Q = P

The magnitude of tells us something about
how far is from .

SD(P | |Q)
Q P

Q2: When can we compute it?

= ?? 𝔼X∼Q[𝒮P[g](X)] = ?

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

Q2: When can we compute it?

= ?? 𝔼X∼Q[𝒮P[g](X)] = ?

= 𝔼X∼Qn
[𝒮P[g](X)] =

1
n

n

∑
i=1

𝒮P[g](xi)

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

Q2: When can we compute it?

= ?? 𝔼X∼Q[𝒮P[g](X)] = ?

= 𝔼X∼Qn
[𝒮P[g](X)] =

1
n

n

∑
i=1

𝒮P[g](xi)

Answer 1: Compare to an empirical measure/dataset! Qn =
1
n

n

∑
i=1

δxi

SD(P | |Q) = sup
g∈𝒢

|𝔼X∼Q[𝒮P[g](X)] |

Q2: When can we compute it?

SD (P
1
n

n

∑
i=1

δxi) = sup
g∈𝒢

1
n

n

∑
i=1

𝒮P[g](X)

Answer 2: When is not too large, so as to
make this supremum tractable.

𝒢

Q2: When can we compute it?

SD (P
1
n

n

∑
i=1

δxi) = sup
g∈𝒢

1
n

n

∑
i=1

𝒮P[g](X)

Answer 2: When is not too large, so as to
make this supremum tractable.

𝒢

• We do however need to make sure is not too small either, as
otherwise the measure of similarity is not useful for anything.

𝒢

Q2: When can we compute it?

SD (P
1
n

n

∑
i=1

δxi) = sup
g∈𝒢

1
n

n

∑
i=1

𝒮P[g](X)

Answer 2: When is not too large, so as to
make this supremum tractable.

𝒢

Goal: Choose the largest possible such
that is still tractable!

𝒢
SD

• We do however need to make sure is not too small either, as
otherwise the measure of similarity is not useful for anything.

𝒢

Example: SD for N(0,σ2)
SD(P | |Qn) = sup

g∈𝒢

1
n

n

∑
i=1

𝒮P[g](xi)

= sup
g almost diff.

1
n

n

∑
i=1

σ2g′ (xi) − xig(xi)]

Example: SD for N(0,σ2)
SD(P | |Qn) = sup

g∈𝒢

1
n

n

∑
i=1

𝒮P[g](xi)

= sup
g almost diff.

1
n

n

∑
i=1

σ2g′ (xi) − xig(xi)] = ??

Example: SD for N(0,σ2)
SD(P | |Qn) = sup

g∈𝒢

1
n

n

∑
i=1

𝒮P[g](xi)

= sup
g almost diff.

1
n

n

∑
i=1

σ2g′ (xi) − xig(xi)] = ??

The Stein class of almost differentiable functions is
way too large for us to be able to find this supremum.
Not so helpful as a computational tool….

Example 1: Graph-Stein discrepancies
GSD(P | |Q) = sup

g∈𝒢
𝔼X∼P[𝒮P[g](X)]

Gorham, J., & Mackey, L. (2015). Measuring sample quality with Stein’s method.
Advances in Neural Information Processing Systems, 226–234.

𝒢 = {g : max (∥g(v)∥∞,∥∇g(v)∥∞,
∥g(x) − g(y)∥∞

∥x − y∥1
,

∥∇g(x) − ∇g(y)∥∞

∥x − y∥1) ≤ 1,

∥g(x) − g(y) − ∇g(x)(x − y)∥∞
1
2 ∥x − y∥2

1

≤ 1,
∥g(x) − g(y) − ∇g(y)(x − y)∥∞

1
2 ∥x − y∥2

1

≤ 1, ∀x, y ∈ E, v ∈ {xi}n
i=1}

 is the Langevin Stein operator.𝒮P

Example 1: Graph-Stein discrepancies
GSD(P | |Q) = sup

g∈𝒢
𝔼X∼P[𝒮P[g](X)]

Gorham, J., & Mackey, L. (2015). Measuring sample quality with Stein’s method.
Advances in Neural Information Processing Systems, 226–234.

𝒢 = {g : max (∥g(v)∥∞,∥∇g(v)∥∞,
∥g(x) − g(y)∥∞

∥x − y∥1
,

∥∇g(x) − ∇g(y)∥∞

∥x − y∥1) ≤ 1,

∥g(x) − g(y) − ∇g(x)(x − y)∥∞
1
2 ∥x − y∥2

1

≤ 1,
∥g(x) − g(y) − ∇g(y)(x − y)∥∞

1
2 ∥x − y∥2

1

≤ 1, ∀x, y ∈ E, v ∈ {xi}n
i=1}

 is the Langevin Stein operator.𝒮P

The class is small enough that we can find the maximum through
linear programming!

Example 2: Hyvarinen divergence

SM(P | |Q) = sup
g∈𝒢

∥𝔼X∼Q[𝒮P[g](X)]∥

Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., & Mackey, L. (2019). Minimum Stein
discrepancy estimators. Neural Information Processing Systems, 12964–12976.

𝒢 = {g = (g1, …, gd) ∈ C2(𝒳, ℝd) ∩ L2(𝒳; ℚ) : ∥g∥L2(𝒳;ℚ) ≤ 1}
 is the Langevin Stein operator.𝒮P

Example 2: Hyvarinen divergence

SM(P | |Q) = sup
g∈𝒢

∥𝔼X∼Q[𝒮P[g](X)]∥

Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., & Mackey, L. (2019). Minimum Stein
discrepancy estimators. Neural Information Processing Systems, 12964–12976.

𝒢 = {g = (g1, …, gd) ∈ C2(𝒳, ℝd) ∩ L2(𝒳; ℚ) : ∥g∥L2(𝒳;ℚ) ≤ 1}
 is the Langevin Stein operator.𝒮P

The class is small enough that we can attain the maximum!

Example 2: Hyvarinen divergence
SM(P | |Q) = sup

g∈𝒢
∥𝔼X∼Q[𝒮P[g](X)]∥

= 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

Example 2: Hyvarinen divergence
SM(P | |Q) = sup

g∈𝒢
∥𝔼X∼Q[𝒮P[g](X)]∥

= 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

• We are comparing the score functions for and , and so this is often
called the score-matching divergence.

P Q

Example 2: Hyvarinen divergence
SM(P | |Q) = sup

g∈𝒢
∥𝔼X∼Q[𝒮P[g](X)]∥

= 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

• We are comparing the score functions for and , and so this is often
called the score-matching divergence.

P Q

• This is the method which powers many modern generative models
such as diffusion models.

Example 2: Hyvarinen divergence
SM(P | |Q) = sup

g∈𝒢
∥𝔼X∼Q[𝒮P[g](X)]∥

= 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

• We are comparing the score functions for and , and so this is often
called the score-matching divergence.

P Q

Hyvärinen, A. (2006). Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6, 695–708.

• This is the method which powers many modern generative models
such as diffusion models.

Example 2: Hyvarinen divergence

SM(P | |Q) = 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

Cannot use this as we typically don’t
know the densities exactly….

p(x) =
p̃(x)
C

Example 2: Hyvarinen divergence

SM(P | |Q) = 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

Cannot use this as we typically don’t
know the densities exactly….

p(x) =
p̃(x)
C

sp(x) = ∇xlog p(x) = ∇xlog p̃(x)
Luckily….

Example 2: Hyvarinen divergence

SM(P | |Q) = 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

Cannot use this as we typically don’t
know the densities exactly….

p(x) =
p̃(x)
C

sp(x) = ∇xlog p(x) = ∇xlog p̃(x)
Luckily….Not the same!

Example 2: Hyvarinen divergence

SM(P | |Q) = 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

Example 2: Hyvarinen divergence

SM(P | |Q) = 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

• Sadly we usually do not have access to in most applications
(typically is some unknown data-generating process).

∇log q
Q

Example 2: Hyvarinen divergence

SM(P | |Q) = 𝔼X∼Q [∥∇xlog p(X) − ∇xlog q(X)∥2
2]

• Sadly we usually do not have access to in most applications
(typically is some unknown data-generating process).

∇log q
Q

• The only type of application where this can be used is for parameter
estimation/generative modelling, since we can typically still evaluate
the divergence up to some additive constant.

More on this shortly….

Example 3: Kernel Stein discrepancies
KSD(P | |Q) = sup

g∈𝒢
∥𝔼X∼Q[𝒮P[g](X)]∥

Chwialkowski, K., Strathmann, H., & Gretton, A. (2016). A kernel test of goodness of fit.
International Conference on Machine Learning, 2606–2615.

Liu, Q., Lee, J. D., & Jordan, M. I. (2016). A kernelized Stein discrepancy for goodness-of-fit tests
and model evaluation. International Conference on Machine Learning, 276–284.

 is the Langevin Stein operator.𝒮P

𝒢 = {g = (g1, …, gd) ∈ ℋk : ∥v∥2 ≤ 1 where vi = ∥gi∥ℋk}

Example 3: Kernel Stein discrepancies
KSD(P | |Q) = sup

g∈𝒢
∥𝔼X∼Q[𝒮P[g](X)]∥

Chwialkowski, K., Strathmann, H., & Gretton, A. (2016). A kernel test of goodness of fit.
International Conference on Machine Learning, 2606–2615.

Liu, Q., Lee, J. D., & Jordan, M. I. (2016). A kernelized Stein discrepancy for goodness-of-fit tests
and model evaluation. International Conference on Machine Learning, 276–284.

 is the Langevin Stein operator.𝒮P

𝒢 = {g = (g1, …, gd) ∈ ℋk : ∥v∥2 ≤ 1 where vi = ∥gi∥ℋk}

The most practical class as it can be evaluated in closed-form!

Stein’s method as a computational tool
Kernel Stein discrepancies

Reproducing kernels
• A reproducing kernel is any symmetric and positive-semidefinite function

.k : 𝒳 × 𝒳 → ℝ

1. Symmetric means that for any , .

2. Positive semi-definite means that for any and , the Gram
matrix (where) must be positive semidefinite.

x, x′ ∈ 𝒳 k(x, x′) = k(x′ , x)

x1, …, xn n ∈ ℕ
K ∈ ℝn×n Kij = k(xi, xj)

(In other words, it can only have nonnegative eigenvalues.)

Reproducing kernels
• A reproducing kernel is any symmetric and positive-semidefinite function

.k : 𝒳 × 𝒳 → ℝ

1. Symmetric means that for any , .

2. Positive semi-definite means that for any and , the Gram
matrix (where) must be positive semidefinite.

x, x′ ∈ 𝒳 k(x, x′) = k(x′ , x)

x1, …, xn n ∈ ℕ
K ∈ ℝn×n Kij = k(xi, xj)

(In other words, it can only have nonnegative eigenvalues.)

One way to think about kernel is as measuring the similarity between points!

Examples of kernels
• Example 1: Squared exponential (or Gaussian) kernel:

k(x, x′) = λ exp (−
∥x − x′ ∥2

2

l)

Examples of kernels
• Example 1: Squared exponential (or Gaussian) kernel:

k(x, x′) = λ exp (−
∥x − x′ ∥2

2

l)
• Example 2: Inverse-multiquadric kernel:

k(x, x′) = λ (∥x − x′ ∥2
2 + c)− 1

2

Examples of kernels
• Example 1: Squared exponential (or Gaussian) kernel:

k(x, x′) = λ exp (−
∥x − x′ ∥2

2

l)
• Example 2: Inverse-multiquadric kernel:

k(x, x′) = λ (∥x − x′ ∥2
2 + c)− 1

2

• Example 3: Polynomial kernel

k(x, x′) = λ(c + x⊤x′)p

Properties of kernels

• Many of the kernels we have seen so far only depend on through
. They are therefore called translation invariant.

• They also all take the following form for some bounded ,
making them radial

• All of these kernels are bounded, which is a super helpful property for most
of what we will do.

x, x′

∥x − x′ ∥

ϕ : 𝒳 → ℝ+

k(x, x′) = λ2ϕ (−
∥x − x′ ∥2

l2)

Kernel hyperparameters
• The parameter is called the amplitude, whilst the parameter is called the

lengthscale.
λ l

k(x, x′) = λ2ϕ (−
∥x − x′ ∥2

l2)

Kernel hyperparameters

Varying amplitude parameter

∥x − x′ ∥

λϕ(∥x − x′ ∥)

[Garnett, 2023]

• The parameter is called the amplitude, whilst the parameter is called the
lengthscale.

λ l

k(x, x′) = λ2ϕ (−
∥x − x′ ∥2

l2)

Kernel hyperparameters

Varying amplitude parameter

∥x − x′ ∥

λϕ(∥x − x′ ∥)

[Garnett, 2023]

Varying lengthscale parameter

∥x − x′ ∥

ϕ(∥x − x′ ∥/l2)

• The parameter is called the amplitude, whilst the parameter is called the
lengthscale.

λ l

k(x, x′) = λ2ϕ (−
∥x − x′ ∥2

l2)

Reproducing kernel Hilbert Spaces
• Let be a Hilbert space of functions from to (i.e. a complete

inner-product space).

• We say that is an RKHS if and only if it has a reproducing kernel; ie. a
kernel which satisfies:

ℋk 𝒳 ℝ

ℋk

•

•

∀x ∈ 𝒳, k(⋅ , x) ∈ ℋk

∀x ∈ 𝒳, ∀f ∈ ℋk, ⟨ f, k(⋅ , x)⟩ℋk
= f(x)

Reproducing kernel Hilbert Spaces
• Let be a Hilbert space of functions from to (i.e. a complete

inner-product space).

• We say that is an RKHS if and only if it has a reproducing kernel; ie. a
kernel which satisfies:

ℋk 𝒳 ℝ

ℋk

•

•

∀x ∈ 𝒳, k(⋅ , x) ∈ ℋk

∀x ∈ 𝒳, ∀f ∈ ℋk, ⟨ f, k(⋅ , x)⟩ℋk
= f(x)

• Intuition (not fully rigorous): I like to think of RKHS functions as
functions of the form:

f(x) =
n

∑
i=1

wik(x, xi)

Examples of RKHS
• Example 1: If we take an order-1 polynomial

kernel, the RKHS is simply the space of
straight lines!

[Garnett, 2023]

• Example 2: If we take a Gaussian or
inverse-multi quadric kernel, the RKHS is a
space of infinitely smooth function!

Kernel mean embeddings
• Due to its nice properties, we

may want to represent
probability distributions as
functions in an RKHS.

• This is achieved through the
kernel mean embedding:

μP(x) = ∫ k(x, y)p(y)dy

Kernel mean embeddings
• Due to its nice properties, we

may want to represent
probability distributions as
functions in an RKHS.

• This is achieved through the
kernel mean embedding:

μP(x) = ∫ k(x, y)p(y)dy

Working with functions is a lot easier than working with
distributions… This is another convenient characterisation!!

Maximum mean discrepancy
• For example, we can just compare two distributions based on the

distance between their kernel mean embeddings.

• This is called the maximum mean discrepancy (MMD)!

MMD(P | |Q) = ∥μP − μQ∥ℋk

Maximum mean discrepancy
• For example, we can just compare two distributions based on the

distance between their kernel mean embeddings.

• This is called the maximum mean discrepancy (MMD)!
MMD!

MMD(P | |Q) = ∥μP − μQ∥ℋk

Maximum mean discrepancy
• For example, we can just compare two distributions based on the

distance between their kernel mean embeddings.

• This is called the maximum mean discrepancy (MMD)!
MMD!

MMD(P | |Q) = ∥μP − μQ∥ℋk

• This is actually an integral probability
metric based on all functions of a fixed
size in this RKHS!

Maximum mean discrepancy
• For example, we can just compare two distributions based on the

distance between their kernel mean embeddings.

• This is called the maximum mean discrepancy (MMD)!
MMD!

MMD(P | |Q) = ∥μP − μQ∥ℋk

• This is actually an integral probability
metric based on all functions of a fixed
size in this RKHS!

• Of course we often can’t compute the kernel
mean embedding since it is an integral…

Stein RKHS
• We can use our favourite tool to make these embeddings tractable!

h(x) = 𝒮P[g](x) ∈ ℋkp

where is another reproducing kernel.kp

• Consider where each . Then:g(x) = (g1(x), …, gd(x)) gi(x) ∈ ℋk

• All the functions in have mean zero under by construction,
and therefore we definitely have that:

ℋkp
P

μp(x) = ∫ kp(x, y)p(y)dx = 0 .

Kernel Stein discrepancies
KSD(P | |Q) = sup

g∈𝒢
∥𝔼X∼Q[𝒮P[g](X)]∥

• The Stein discrepancy with the RKHS is equivalent to the the
MMD with kernel !

ℋk
kp

Chwialkowski, K., Strathmann, H., & Gretton, A. (2016). A kernel test of goodness of fit.
International Conference on Machine Learning, 2606–2615.

Liu, Q., Lee, J. D., & Jordan, M. I. (2016). A kernelized Stein discrepancy for goodness-of-fit tests
and model evaluation. International Conference on Machine Learning, 276–284.

Expression for the Langevin KSD

kP(x, x′) = k(x, x′)⟨∇xlog p(x), ∇x′ log p(x′)⟩ + ⟨∇xk(x, x′), ∇x′ log p(x′)⟩

+⟨∇x′ k(x, x′), ∇xlog p(x)⟩ + Tr(∇x ∇x′ k(x, x′))

KSD(P | |Qn) =
1
n2

n

∑
i,j=1

kP(xi, xj)

• The Stein discrepancy can be simplified to

• The function is a Stein reproducing kernel (i.e. it is also a kernel!)kP

Expression for the Langevin KSD

kP(x, x′) = k(x, x′)⟨∇xlog p(x), ∇x′ log p(x′)⟩ + ⟨∇xk(x, x′), ∇x′ log p(x′)⟩

+⟨∇x′ k(x, x′), ∇xlog p(x)⟩ + Tr(∇x ∇x′ k(x, x′))

KSD(P | |Qn) =
1
n2

n

∑
i,j=1

kP(xi, xj)

• The Stein discrepancy can be simplified to

Looks complicated but it’s all straightforward to compute!

Kernel derivatives
• We can look at the example of the Gaussian kernel:

k(x, x′) = λ exp (−
∥x − x′ ∥2

2

l)

Kernel derivatives
• We can look at the example of the Gaussian kernel:

k(x, x′) = λ exp (−
∥x − x′ ∥2

2

l) ∇xk(x, x′) = −
2λ(x − x′)

l2
exp (−

∥x − x′ ∥2
2

l)

Kernel derivatives
• We can look at the example of the Gaussian kernel:

k(x, x′) = λ exp (−
∥x − x′ ∥2

2

l) ∇xk(x, x′) = −
2λ(x − x′)

l2
exp (−

∥x − x′ ∥2
2

l)

Tr(∇x ∇x′ k(x, x′)) =
2λ (l2 − 2∑d

i=1 (xi − x′ i)2)
l4

exp (−
∥x − x′ ∥2

2

l)

Kernel derivatives
• We can look at the example of the Gaussian kernel:

k(x, x′) = λ exp (−
∥x − x′ ∥2

2

l) ∇xk(x, x′) = −
2λ(x − x′)

l2
exp (−

∥x − x′ ∥2
2

l)

Tr(∇x ∇x′ k(x, x′)) =
2λ (l2 − 2∑d

i=1 (xi − x′ i)2)
l4

exp (−
∥x − x′ ∥2

2

l)
This is indeed straightforward to compute!

Computational complexity of the KSD
KSD(P | |Qn) =

1
n2

n

∑
i, j=1

kP(xi, xj)

kP(x, x′) = k(x, x′)⟨∇x log p(x), ∇x′ log p(x′)⟩ + ⟨∇xk(x, x′), ∇x′ log p(x′)⟩
+⟨∇x′ k(x, x′), ∇x log p(x)⟩ + Tr(∇x ∇x′ k(x, x′))

Computational complexity of the KSD

• The computational complexity of each evaluation is .kP O(d)

KSD(P | |Qn) =
1
n2

n

∑
i, j=1

kP(xi, xj)

kP(x, x′) = k(x, x′)⟨∇x log p(x), ∇x′ log p(x′)⟩ + ⟨∇xk(x, x′), ∇x′ log p(x′)⟩
+⟨∇x′ k(x, x′), ∇x log p(x)⟩ + Tr(∇x ∇x′ k(x, x′))

Computational complexity of the KSD

• The computational complexity of each evaluation is .kP O(d)

• There are evaluations of in the KSD expression.O(n2) kP

KSD(P | |Qn) =
1
n2

n

∑
i, j=1

kP(xi, xj)

kP(x, x′) = k(x, x′)⟨∇x log p(x), ∇x′ log p(x′)⟩ + ⟨∇xk(x, x′), ∇x′ log p(x′)⟩
+⟨∇x′ k(x, x′), ∇x log p(x)⟩ + Tr(∇x ∇x′ k(x, x′))

Computational complexity of the KSD

• The computational complexity of each evaluation is .kP O(d)

• There are evaluations of in the KSD expression.O(n2) kP

KSD(P | |Qn) =
1
n2

n

∑
i, j=1

kP(xi, xj)

Total cost is !O(n2d)

kP(x, x′) = k(x, x′)⟨∇x log p(x), ∇x′ log p(x′)⟩ + ⟨∇xk(x, x′), ∇x′ log p(x′)⟩
+⟨∇x′ k(x, x′), ∇x log p(x)⟩ + Tr(∇x ∇x′ k(x, x′))

Scalable Stein discrepancies

• It is possible to bring down the cost to linear (rather than quadratic) in
 through very accurate approximations (i.e. random features).

• When is a posterior based on a lot of data points, the cost of each
score function evaluation can be prohibitive. Approximations based on
stochastic estimates of the score can be used in those cases.

n

P

Gorham, J., Raj, A., & Mackey, L. (2020). Stochastic Stein discrepancies. NeurIPS.

Huggins, J. H., & Mackey, L. (2018). Random feature Stein discrepancies. NeurIPS.

Jitkrittum, W., Xu, W., Szabo, Z., Fukumizu, K., & Gretton, A. (2017). A linear-time kernel
goodness-of-fit test. NeurIPS.

U-statistic or V-statistic

KSD(P | |Qn) =
1
n2

n

∑
i, j=1

kP(xi, xj)

̂KSD (P | |Q) =
1

n(n − 1)

n

∑
i, j=1

kP(xi, xj)

V-statistic

U-statistic

• Interestingly, this is not the only way to approximate :KSD(P | |Q)

U-statistic or V-statistic

KSD(P | |Qn) =
1
n2

n

∑
i, j=1

kP(xi, xj)

̂KSD (P | |Q) =
1

n(n − 1)

n

∑
i, j=1

kP(xi, xj)

V-statistic

U-statistic

• The U-statistic is unbiased but has higher variance, whereas the V-
statistic is biased but has lower variance.

• Interestingly, this is not the only way to approximate :KSD(P | |Q)

Outline (updated)

• What is Stein’s method, and why should you care…

• Computational tools based on Stein’s method.

• Some nice (new) algorithms!

Outline (updated)

• What is Stein’s method, and why should you care…

• Computational tools based on Stein’s method.

• Some nice (new) algorithms!

We now have an amazing hammer and we
can use it to hit pretty much all the nails in
computational statistics.

Our nails…

Stein’s
Method

Hypothesis testing

Monte Carlo
Methods

Gradient
Flows

(Generalised) Bayesian Inference

Robust
estimators

Parameter estimation

Measuring sample quality

control variates

Thinningimportance sampling

Our nails…

Stein’s
Method

Hypothesis testing

Monte Carlo
Methods

Gradient
Flows

(Generalised) Bayesian Inference

Robust
estimators

Parameter estimation

Measuring sample quality

control variates

Thinningimportance sampling

…

…

…

… …

…

…

Focus of this course

• There are so many topics I could touch upon which I will unfortunately
not have time to cover….

Focus of this course

• There are so many topics I could touch upon which I will unfortunately
not have time to cover….

Algorithms Theory Large-scale experiments

Focus of this course

• There are so many topics I could touch upon which I will unfortunately
not have time to cover….

Algorithms Theory Large-scale experiments

• My aim is simply to give you some intuition for what can be done with
Stein’s method, rather than an extensive guide.

Focus of this course

• There are so many topics I could touch upon which I will unfortunately
not have time to cover….

Algorithms Theory Large-scale experiments

• My aim is simply to give you some intuition for what can be done with
Stein’s method, rather than an extensive guide.

• I will be biased towards topics on which I have myself worked…

Stein’s method as a computational tool
Hypothesis testing

Goodness-of-fit testing

• In goodness-of-fit testing, we want to answer questions such as:

“Do I have a good model for my observed data?”

“Are the distributional assumptions of my analysis reasonable”

• Given a distribution and some observed data , this is
formalised as:

P {xi}n
i=1 ∼ Q

H0 : P = Q
H1 : P ≠ Q

Testing with discrepancies

• Assume we have a “reasonable” notion of discrepancy/dissimilarity .
Then a good way to check whether holds is to compute:

D
H0

H0 : P = Q
H1 : P ≠ Q

Testing with discrepancies

• Assume we have a “reasonable” notion of discrepancy/dissimilarity .
Then a good way to check whether holds is to compute:

D
H0

H0 : P = Q
H1 : P ≠ Q

• If this is zero, we know that !P = Q
• If this is strictly greater than zero, we know that !P ≠ Q

Existing work

• Most existing work focuses on very simple ; e.g. Gaussian, Poisson, etc.. P

Existing work

• Most existing work focuses on very simple ; e.g. Gaussian, Poisson, etc.. P

 = distance between CDFsD L∞ Kolmogorov-Smirnov test

Existing work

• Most existing work focuses on very simple ; e.g. Gaussian, Poisson, etc.. P

 = distance between CDFsD L∞ Kolmogorov-Smirnov test

 = weighted between CDFsD L2 Anderson-Darling test

Existing work

• Most existing work focuses on very simple ; e.g. Gaussian, Poisson, etc.. P

• The main reason that these consider only simple is that the distance
is otherwise infeasible to compute/estimate!

P

 = distance between CDFsD L∞ Kolmogorov-Smirnov test

 = weighted between CDFsD L2 Anderson-Darling test

Goodness of fit testing with kernels

• Sadly most of these existing tests are very limited in the sense that you
have to find a new test for every distribution you care about….P

Goodness of fit testing with kernels

• Sadly most of these existing tests are very limited in the sense that you
have to find a new test for every distribution you care about….P

Idea: Let’s use our hammer (the KSD) for goodness-of-fit testing!

Goodness-of-fit testing with KSD

• In practice we do not observe but only observe :Q Qn

H0 : P = Q
H1 : P ≠ Q

Goodness-of-fit testing with KSD

• In practice we do not observe but only observe :Q Qn

H0 : P = Q
H1 : P ≠ Q

Goodness-of-fit testing with KSD

• In practice we do not observe but only observe :Q Qn

H0 : P = Q
H1 : P ≠ Q

• We will therefore compute instead of , which
very conveniently turns out to be exactly what we can compute!

KSD(P | |Qn) KSD(P | |Q)

Accounting for finite data

• Since we are using instead of , we do not have thatQn Q

H0 : P = Q
H1 : P ≠ Q

KSD(P | |Qn) ≠ 0 ⇒ P ≠ Q

• We must account for the fact that we have a finite amount of data .n

Accounting for finite data

• Since we are using instead of , we do not have thatQn Q

H0 : P = Q
H1 : P ≠ Q

KSD(P | |Qn) ≠ 0 ⇒ P ≠ Q

• We must account for the fact that we have a finite amount of data .n

• However, we would still expect that

KSD(P | |Qn) ≫ 0 ⇒ P ≠ Q
KSD(P | |Qn) ≈ 0 ⇒ P = Q

Test statistic
• To construct this test, we will therefore choose:

H0 : P = Q
H1 : P ≠ Q

Δ = nKSD(P | |Qn)2

• If is larger than we would expect under the null, we will reject the null
hypothesis, and otherwise we will not reject.

Δ

• In practice the p-values will be computed using a Wild bootstrap
algorithm which approximates the distribution of under :Δ H0

B = n
n

∑
i,j=1

WiWjkp(xi, xj) W1, …, Wn ∼ Rademacher

Kernel goodness-of-fit in practice

• Set level of the test to (e.g. 0.05)

• Calculate .

• Obtain , the -quantile from
the bootstrap samples .

• If then reject, otherwise do not
reject.

α
Δ = nKSD(P | |Qn)

cα (1 − α)
M B1, …, BM

Δ > cα

[Chwialkowski et al 2016 - slightly modified]

Δ

Δ

Quantile corresponding
to our level

• Goodness-of-fit testing algorithm:

H0 : P = Q
H1 : P ≠ Q

• Consider some parametric family
of models:

Composite goodness-of-fit

Key, O., Gretton, A., Briol, F-X. & Fernandez, T.. (2021). Composite goodness-of-fit tests with kernels.
arXiv:2111.10275 (under review).

{Pθ : θ ∈ Θ}

• Consider some parametric family
of models:

Composite goodness-of-fit

Key, O., Gretton, A., Briol, F-X. & Fernandez, T.. (2021). Composite goodness-of-fit tests with kernels.
arXiv:2111.10275 (under review).

{Pθ : θ ∈ Θ}

H0 : ∃θ* such that Pθ* = Q
H1 : ∄θ* such that Pθ* = Q

• An interesting question could be:
“Is my parametric model misspecified?”

• A key question in statistics is:

Overview: goodness-of-fit with Stein

“Are the distributional assumptions of my analysis reasonable”

• A key question in statistics is:

Overview: goodness-of-fit with Stein

• Sadly classical statistical tests cannot answer this question beyond very
simple distributions such as Gaussians or uniforms.P

“Are the distributional assumptions of my analysis reasonable”

• A key question in statistics is:

Overview: goodness-of-fit with Stein

Stein characterisations allow us to design goodness-of-fit
tests for a very wide variety of models so long as
is tractable!

∇xlog p(x)

• Sadly classical statistical tests cannot answer this question beyond very
simple distributions such as Gaussians or uniforms.P

“Are the distributional assumptions of my analysis reasonable”

Stein’s method as a computational tool
Parameter estimation and gen-Bayes

Minimum distance estimators

• In parameter estimation, we typically have a parametric family of
distributions:

{Pθ : θ ∈ Θ}

• Given some data , we would like to findx1, …, xn ∼ Q

θ* such that Pθ* = Q

Why discrepancies?

• We already have plenty of good ways to estimate parameters,
including maximum likelihood estimation and Bayes:

arg max
θ∈Θ

log (
n

∏
i=1

pθ(xi)) π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ)

Why discrepancies?

• We already have plenty of good ways to estimate parameters,
including maximum likelihood estimation and Bayes:

arg max
θ∈Θ

log (
n

∏
i=1

pθ(xi)) π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ)

• These are even known to be optimal in some ways, but….

“What if the model/likelihood is misspecified?”

“What if these approaches are computationally intractable?”

Minimum distance estimators

arg min
θ∈Θ

D(Pθ | |Q)

• A natural approach is to use a minimum distance estimator:

Minimum distance estimators

arg min
θ∈Θ

D(Pθ | |Q)

• A natural approach is to use a minimum distance estimator:

• We are simply asking for the
model and the true data
generating process to be the
same, or as similar as possible.

Pθ
Q

Existing methods

arg min
θ∈Θ

D(Pθ | |Qn)arg min
θ∈Θ

D(Pθ | |Q)

• Of course, we do not have access to , but we have access to Q Qn

Existing methods

arg min
θ∈Θ

D(Pθ | |Qn)arg min
θ∈Θ

D(Pθ | |Q)

• Of course, we do not have access to , but we have access to Q Qn

• Examples:

 compares momentsD Method of moments

Existing methods

arg min
θ∈Θ

D(Pθ | |Qn)arg min
θ∈Θ

D(Pθ | |Q)

• Of course, we do not have access to , but we have access to Q Qn

• Examples:

 compares momentsD Method of moments

 is KL divergenceD Maximum likelihood
“morally”

A sketch of minimum distance
estimation

arg min
θ∈Θ

D(Pθ | |Qn)

 is smallD(Pθ* | |Qn) is largeD(Pθ1
| |Qn)

More on existing methods
• Many discrepancies have been used in the literature, including the

Wasserstein distance, total variation distance, Beta divergences,
Gamma divergences, etc…

More on existing methods
• Many discrepancies have been used in the literature, including the

Wasserstein distance, total variation distance, Beta divergences,
Gamma divergences, etc…

• There are typically two main questions to worry about: “Is this
discrepancy computationally tractable?” and “What properties does
this discrepancy have?”

More on existing methods
• Many discrepancies have been used in the literature, including the

Wasserstein distance, total variation distance, Beta divergences,
Gamma divergences, etc…

• There are typically two main questions to worry about: “Is this
discrepancy computationally tractable?” and “What properties does
this discrepancy have?”

• Example: are the
distributions corresponding
to the blue and red
densities similar?

More on existing methods
• Many discrepancies have been used in the literature, including the

Wasserstein distance, total variation distance, Beta divergences,
Gamma divergences, etc…

• There are typically two main questions to worry about: “Is this
discrepancy computationally tractable?” and “What properties does
this discrepancy have?”

• Example: are the
distributions corresponding
to the blue and red
densities similar?

More on existing methods
• Many discrepancies have been used in the literature, including the

Wasserstein distance, total variation distance, Beta divergences,
Gamma divergences, etc…

• There are typically two main questions to worry about: “Is this
discrepancy computationally tractable?” and “What properties does
this discrepancy have?”

• Example: are the
distributions corresponding
to the blue and red
densities similar?

Answer: it depends on the discrepancy…

Minimum Stein discrepancy estimators

arg min
θ∈Θ

SD(Pθ | |Qn)
• We can use our favourite hammer on this nail:

Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., & Mackey, L. (2019). Minimum Stein discrepancy
estimators. NeurIPS, 12964–12976.

• We will come back to these properties later on. In the meantime…

Minimum Stein discrepancy estimators

arg min
θ∈Θ

SD(Pθ | |Qn)
• We can use our favourite hammer on this nail:

• Examples:

• We recover score-matching with the Hyvarinen divergence.
• For those that are old enough to know what this is, we can also

recover minimum probability flow or contrastive divergence…

Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., & Mackey, L. (2019). Minimum Stein discrepancy
estimators. NeurIPS, 12964–12976.

• We will come back to these properties later on. In the meantime…

Generalised Bayesian Inference

π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ)

• In Bayesian Inference, we typically do inference for parameters
using a posterior distribution:

Generalised Bayesian Inference

π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ)

• In Bayesian Inference, we typically do inference for parameters
using a posterior distribution:

Prior

Likelihood

Posterior

Generalised Bayesian Inference

π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ)

• In Bayesian Inference, we typically do inference for parameters
using a posterior distribution:

• Generalised Bayesian Inference proposes to use instead:

π(θ |x1, …, xn) ∝ exp (−L(θ; x1, …, xn))π(θ)

where is an empirical loss.L(θ; x1, …, xn)

Prior

Likelihood

Posterior

Generalised Bayesian Inference

π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ)

• In Bayesian Inference, we typically do inference for parameters
using a posterior distribution:

• Generalised Bayesian Inference proposes to use instead:

π(θ |x1, …, xn) ∝ exp (−L(θ; x1, …, xn))π(θ)

where is an empirical loss.L(θ; x1, …, xn)

Prior

Likelihood

Posterior

Prior

Loss

Generalised
Posterior

Generalised Bayesian Inference with
Stein Discrepancies

• A natural choice of loss function is to pick a discrepancy:

π(θ |x1, …, xn) ∝ exp (−nSD(Pθ | |Qn))π(θ)

i.e. L(θ; x1, …, xn) = nSD(Pθ, Qn)

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2022). Robust generalised Bayesian inference for intractable
likelihoods. Journal of the Royal Statistical Society: Series B: (Statistical Methodology), 84(3), 997–1022.

Generalised Bayesian Inference with
Stein Discrepancies

• A natural choice of loss function is to pick a discrepancy:

π(θ |x1, …, xn) ∝ exp (−nSD(Pθ | |Qn))π(θ)

i.e. L(θ; x1, …, xn) = nSD(Pθ, Qn)

Intuition: Our generalised posterior will have more mass in regions where
 is small (or equivalently where is large). This

will typically happen close to the minimum Stein discrepancy estimator
SD(Pθ | |Qn) exp(−nSD(Pθ | |Qn))

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2022). Robust generalised Bayesian inference for intractable
likelihoods. Journal of the Royal Statistical Society: Series B: (Statistical Methodology), 84(3), 997–1022.

Why Stein discrepancies?

• A very reasonable question at this point is:

“Why Stein discrepancies? Why not anything else?”

Why Stein discrepancies?

• A very reasonable question at this point is:

“Why Stein discrepancies? Why not anything else?”

• In turns out that they have two key properties:

1. Their computational tractability makes them straightforward to apply even
when dealing with somewhat complex models.

2. The generator approach gives us a lot of flexibility in terms of which
operator to use, and hence how the discrepancies encode similarity…

Weighted discrepancies
• One property we might want is “outlier robustness”; i.e. a small

number of outliers do not impact our estimator/inference procedure.

Weighted discrepancies

DSM(P | |Q) := 𝔼X∼Q [∥w(X)(∇xlog p(X) − ∇xlog q(X))∥2
2]

DKSD2(P | |Q) := 𝔼X,X′ ∼Q [kp(X, X′)] k(x, x′) = w(x)k̃(x, x′)w(x′)

• This can be achieved by weighting our favourite discrepancies:

• One property we might want is “outlier robustness”; i.e. a small
number of outliers do not impact our estimator/inference procedure.

Weighted discrepancies

DSM(P | |Q) := 𝔼X∼Q [∥w(X)(∇xlog p(X) − ∇xlog q(X))∥2
2]

DKSD2(P | |Q) := 𝔼X,X′ ∼Q [kp(X, X′)] k(x, x′) = w(x)k̃(x, x′)w(x′)

• This can be achieved by weighting our favourite discrepancies:

• One property we might want is “outlier robustness”; i.e. a small
number of outliers do not impact our estimator/inference procedure.

• In particular, we can choose weights which decrease the impact of data
far away from the modes of the distribution.

Robustness for KSD Bayes

Pθ = 𝒩(θ,1) Q = (1 − ϵ)𝒩(θ*,1) + ϵ𝒩(10,1)
= 1

• Consider the following toy setup with a location model:

Robustness for KSD Bayes

Pθ = 𝒩(θ,1) Q = (1 − ϵ)𝒩(θ*,1) + ϵ𝒩(10,1)
= 1

• Consider the following toy setup with a location model:

w(x) = (1 + x2)− 1
2

Robustness for KSD Bayes

Pθ = 𝒩(θ,1) Q = (1 − ϵ)𝒩(θ*,1) + ϵ𝒩(10,1)
= 1

• Consider the following toy setup with a location model:

w(x) = (1 + x2)− 1
2

Not robust! Robust!

Intractable likelihoods
• The second property relates to computational tractability. We

have already discussed the fact that some models have
intractable likelihoods:

pθ(x) =
p̃θ(x)
Cθ

Intractable likelihoods
• The second property relates to computational tractability. We

have already discussed the fact that some models have
intractable likelihoods:

pθ(x) =
p̃θ(x)
Cθ

Stein discrepancies are ideal for estimating their parameters!

Intractable likelihoods
• The second property relates to computational tractability. We

have already discussed the fact that some models have
intractable likelihoods:

pθ(x) =
p̃θ(x)
Cθ

Stein discrepancies are ideal for estimating their parameters!

• The situation is much worse for Bayes, as we get
doubly intractable problems:

π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ) =
1
C

n

∏
i=1

p̃θ(xi)
Cθ

π(θ)

Intractable likelihoods
• The second property relates to computational tractability. We

have already discussed the fact that some models have
intractable likelihoods:

pθ(x) =
p̃θ(x)
Cθ

Stein discrepancies are ideal for estimating their parameters!

• The situation is much worse for Bayes, as we get
doubly intractable problems:

π(θ |x1, …, xn) ∝
n

∏
i=1

pθ(xi)π(θ) =
1
C

n

∏
i=1

p̃θ(xi)
Cθ

π(θ)

Stein discrepancies remove only the worst constant (i.e. but not)!Cθ C

Stein discrepancies as quadratic forms
• Assume that you have a (natural) exponential family model:

pθ(x) ∝ exp(−T(x)⊤θ + b(θ) + h(x))

for some , and .T : ℝd → ℝp b : ℝp → ℝ h : ℝd → ℝ

Stein discrepancies as quadratic forms
• Assume that you have a (natural) exponential family model:

pθ(x) ∝ exp(−T(x)⊤θ + b(θ) + h(x))

for some , and .T : ℝd → ℝp b : ℝp → ℝ h : ℝd → ℝ

• Key result: any squared Stein discrepancy based on a Langevin
Stein operator is quadratic in :θ

SD2(Pθ | |Qn) = θ⊤Anθ + b⊤
n θ + cn

Stein discrepancies as quadratic forms
• Assume that you have a (natural) exponential family model:

pθ(x) ∝ exp(−T(x)⊤θ + b(θ) + h(x))

for some , and .T : ℝd → ℝp b : ℝp → ℝ h : ℝd → ℝ

• Key result: any squared Stein discrepancy based on a Langevin
Stein operator is quadratic in :θ

SD2(Pθ | |Qn) = θ⊤Anθ + b⊤
n θ + cn

This works even when we do not know the normalisation constant!

Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a

quadratic form?

Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a

quadratic form?
The Gaussian location model!

Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a

quadratic form?
The Gaussian location model!

• We therefore have a generalised posterior of the following form:

π(θ |x1, …, xn) ∝ exp (−θ⊤Anθ + b⊤
n θ + cn)π(θ)

Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a

quadratic form?
The Gaussian location model!

• We therefore have a generalised posterior of the following form:

π(θ |x1, …, xn) ∝ exp (−θ⊤Anθ + b⊤
n θ + cn)π(θ)

Gaussian

Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a

quadratic form?
The Gaussian location model!

• We therefore have a generalised posterior of the following form:

π(θ |x1, …, xn) ∝ exp (−θ⊤Anθ + b⊤
n θ + cn)π(θ)

Gaussian Gaussian???

Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a

quadratic form?
The Gaussian location model!

• We therefore have a generalised posterior of the following form:

π(θ |x1, …, xn) ∝ exp (−θ⊤Anθ + b⊤
n θ + cn)π(θ)

Gaussian Gaussian???Gaussian!!

Conjugacy for generalised Bayes
• Which model has a likelihood which looks like exponential of a

quadratic form?
The Gaussian location model!

• We therefore have a generalised posterior of the following form:

π(θ |x1, …, xn) ∝ exp (−θ⊤Anθ + b⊤
n θ + cn)π(θ)

Gaussian Gaussian???Gaussian!!

We get conjugacy for all natural exponential family models even
when we do not know their normalisation constant!

Protein signalling networks

pθ(x) ∝ exp −
d

∑
i=1

θi exp(xi) − ∑
i<j

θi, j exp(xi)exp(xj)

Strength of interactions
between proteins and i j

Parameters: θi ≥ 0, θi, j ≥ 0

Protein signalling networks

pθ(x) ∝ exp −
d

∑
i=1

θi exp(xi) − ∑
i<j

θi, j exp(xi)exp(xj)

Strength of interactions
between proteins and i j

Parameters: θi ≥ 0, θi, j ≥ 0

This is an exponential family, so we can have conjugate (and robust) gen-Bayes!

Protein signalling networks

Protein signalling networks

Ising model

pθ(x) ∝ exp
1
θ

d

∑
i=1

∑
j∈𝒩i

xixj

Data space: , 𝒳 = {0,1}d n = 1000

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian inference for discrete intractable likelihood.
Journal of the American Statistical Association, to Appear.

Ising model

pθ(x) ∝ exp
1
θ

d

∑
i=1

∑
j∈𝒩i

xixj

Data space: , 𝒳 = {0,1}d n = 1000

Computational cost:

Bayes: ??? DFD-Bayes: 540s

KSD-Bayes: 2353s Pseudo-Bayes: 1053s

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian inference for discrete intractable likelihood.
Journal of the American Statistical Association, to Appear.

Ising model

pθ(x) ∝ exp
1
θ

d

∑
i=1

∑
j∈𝒩i

xixj

Data space: , 𝒳 = {0,1}d n = 1000

Computational cost:

Bayes: ??? DFD-Bayes: 540s

KSD-Bayes: 2353s Pseudo-Bayes: 1053s

Bayes is not feasible here due to double intractability!

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian inference for discrete intractable likelihood.
Journal of the American Statistical Association, to Appear.

Ising model

pθ(x) ∝ exp
1
θ

d

∑
i=1

∑
j∈𝒩i

xixj

Data space: , 𝒳 = {0,1}d n = 1000

Computational cost:

Bayes: ??? DFD-Bayes: 540s

KSD-Bayes: 2353s Pseudo-Bayes: 1053s
Pseudo-Bayes uses the wrong model and so does not
converge when we get more data…!

Bayes is not feasible here due to double intractability!

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian inference for discrete intractable likelihood.
Journal of the American Statistical Association, to Appear.

Conway-Maxwell Poisson
graphical model

pθ(x) ∝ exp
d

∑
i=1

θixi −
d

∑
i=1

∑
j∈𝒩i

θi,jxixj −
d

∑
i=1

log(xi!)

“Easy-ish”

“Very hard”

“Truth”

Bayesian online change-point detection

Altamirano, M., Briol, F.-X., & Knoblauch, J. (2023). Robust and scalable Bayesian online changepoint detection. ICML, 642–663.

Conjugacy and robustness can be helpful for much simpler likelihoods…

Bayesian online change-point detection

Altamirano, M., Briol, F.-X., & Knoblauch, J. (2023). Robust and scalable Bayesian online changepoint detection. ICML, 642–663.

Conjugacy and robustness can be helpful for much simpler likelihoods…

Robust Gaussian process regression

Altamirano, M., Briol, F.-X., & Knoblauch, J. (2023). Robust and conjugate Gaussian process regression. arXiv:2311.00463.

Robust Gaussian process regression

Altamirano, M., Briol, F.-X., & Knoblauch, J. (2023). Robust and conjugate Gaussian process regression. arXiv:2311.00463.

Not Stein but still related….

Duran-Martin, G., Altamirano, M., Shestopaloff, A. Y., Knoblauch, J., Jones, M., Briol, F.-X., & Murphy, K. (2024).
Outlier-robust Kalman filtering through generalised Bayes. (Under review)

Not Stein but still related….

Duran-Martin, G., Altamirano, M., Shestopaloff, A. Y., Knoblauch, J., Jones, M., Briol, F.-X., & Murphy, K. (2024).
Outlier-robust Kalman filtering through generalised Bayes. (Under review)

• Parameter estimation is challenging in the following two
setting: (i) model misspecification, (i) complex models leading
to challenging computation.

Overview: parameter estimation and
Bayes with Stein’s method

• Stein discrepancies can tackle these issues due to their
computational tractability and their flexibility!

Stein’s method as a computational tool
Measuring sample quality

Computational statistics with MCMC
• Suppose we are performing Bayesian inference and end up with some

posterior distribution denoted .

• The posterior is often intractable, and needs to be approximated
through sampling. One such approach consists of running a Markov
chain with invariant distribution .

P

P

Computational statistics with MCMC
• Suppose we are performing Bayesian inference and end up with some

posterior distribution denoted .

• The posterior is often intractable, and needs to be approximated
through sampling. One such approach consists of running a Markov
chain with invariant distribution .

P

P

This is called Markov chain Monte Carlo (MCMC)!

Computational statistics with MCMC
• Suppose we are performing Bayesian inference and end up with some

posterior distribution denoted .

• The posterior is often intractable, and needs to be approximated
through sampling. One such approach consists of running a Markov
chain with invariant distribution .

P

P

• Ergodic theorems and central limit theorems can be used to justify this
approach asymptotically (i.e. as), but there are still many
practical problems with this in practice…

n → ∞

This is called Markov chain Monte Carlo (MCMC)!

Issues with MCMC

“Good MCMC”

Issues with MCMC

“Good MCMC” “Slow mixing”

Issues with MCMC

“Good MCMC” “Slow mixing” “Poor initialisation”

Issues with MCMC

“Good MCMC” “Slow mixing” “Poor initialisation”

The main problem is that we typically only see the red trajectory and not the orange contour lines…

Issues with MCMC

“Good MCMC” “Slow mixing” “Poor initialisation”

Question 1: Do we have a good MCMC sampler?

The main problem is that we typically only see the red trajectory and not the orange contour lines…

Issues with MCMC

“Good MCMC” “Slow mixing” “Poor initialisation”

Question 1: Do we have a good MCMC sampler?
Question 2: Have we run the MCMC sampler for long enough?

The main problem is that we typically only see the red trajectory and not the orange contour lines…

Trace-plots for MCMC

Trace-plots for MCMC

Visually seems to be mixing…
Now let me look at the other dimensions…

Trace-plots for MCMC

Visually seems to be mixing…
Now let me look at the other dimensions…

Trace-plots for MCMC

Uh oh… hasn’t mixed so well…Visually seems to be mixing…
Now let me look at the other dimensions…

Trace-plots for MCMC

Uh oh… hasn’t mixed so well…Visually seems to be mixing…
Now let me look at the other dimensions…

This is really not a scalable/rigorous approach….

Other diagnostics for MCMC
• Another approach is to track the effective sample size:

ESS =
n

1 + ∑∞
k=1 ρk

Other diagnostics for MCMC
• Another approach is to track the effective sample size:

ESS =
n

1 + ∑∞
k=1 ρk

Number of MCMC samples

Autocorrelation at lag k

Other diagnostics for MCMC
• Another approach is to track the effective sample size:

ESS =
n

1 + ∑∞
k=1 ρk

Number of MCMC samples

Autocorrelation at lag k

• This is not always very reliable as a way of estimating how good
our samples are as we need to estimate the autocorrelation.

• Potential issues:

Other diagnostics for MCMC
• Another approach is to track the effective sample size:

ESS =
n

1 + ∑∞
k=1 ρk

Number of MCMC samples

Autocorrelation at lag k

• This is not always very reliable as a way of estimating how good
our samples are as we need to estimate the autocorrelation.

• Potential issues:

• It is also limited to MCMC, but as we will see shortly there are many
other approaches for approximating a target with a point set!

Other diagnostics for MCMC
• Another approach is to track the effective sample size:

ESS =
n

1 + ∑∞
k=1 ρk

Number of MCMC samples

Autocorrelation at lag k

• This is not always very reliable as a way of estimating how good
our samples are as we need to estimate the autocorrelation.

• Potential issues:

• It is also limited to MCMC, but as we will see shortly there are many
other approaches for approximating a target with a point set!

• Is not valid for stochastic gradient MCMC or any other approximate
MCMC methods where we do not necessarily target the right P

Measuring sample quality

 D(P | |Qn)

Target distribution Particle approximation: Qn =
1
n

n

∑
i=1

δxi

• A natural approach would be to look at some discrepancy:

Measuring sample quality

 D(P | |Qn)

Target distribution Particle approximation: Qn =
1
n

n

∑
i=1

δxi

• A natural approach would be to look at some discrepancy:

• This is indeed what is done to study convergence of MCMC at a theoretical
level, in which case the discrepancy is the total variation distance. (You may
have heard of concepts such as geometric ergodicity?)

Measuring sample quality

 D(P | |Qn)

Target distribution Particle approximation: Qn =
1
n

n

∑
i=1

δxi

• A natural approach would be to look at some discrepancy:

• This is indeed what is done to study convergence of MCMC at a theoretical
level, in which case the discrepancy is the total variation distance. (You may
have heard of concepts such as geometric ergodicity?)

This is completely useless as a practical tool since we cannot compute it!

Measuring sample quality with SDs

 ??SD(P | |Qn) → 0

Gorham, J., & Mackey, L. (2017). Measuring sample quality with kernels. ICML, 1292–1301.

Gorham, J., & Mackey, L. (2015). Measuring sample quality with Stein’s method. NeurIPS, 226–234.

Gorham, J., Duncan, A., Mackey, L., & Vollmer, S. (2019). Measuring sample quality with diffusions. Annals of
Applied Probability, 29(5), 2884–2928.

Measuring sample quality with SDs

 ??SD(P | |Qn) → 0

Gorham, J., & Mackey, L. (2017). Measuring sample quality with kernels. ICML, 1292–1301.

Gorham, J., & Mackey, L. (2015). Measuring sample quality with Stein’s method. NeurIPS, 226–234.

Gorham, J., Duncan, A., Mackey, L., & Vollmer, S. (2019). Measuring sample quality with diffusions. Annals of
Applied Probability, 29(5), 2884–2928.

• The graph Stein discrepancy and the KSD have been proposed for this task
since they are both computable!

• The former essentially always controls weak convergence, whilst the latter
does so under certain conditions of the kernel.

Example: Stochastic gradient
langevin dynamics

Example: Stochastic gradient
langevin dynamics

Identifies sampler which
jumps around too
much…

Example: Stochastic gradient
langevin dynamics

Correctly identifies good sampler!
Identifies sampler which
jumps around too
much…

• Measuring the quality of a point set approximation of a target
 distribution is really hard!P

Overview: measuring sample quality
with Stein’s method

• Measuring the quality of a point set approximation of a target
 distribution is really hard!P

Overview: measuring sample quality
with Stein’s method

• A natural approach is to use a Stein discrepancy between that
point set and the target:

SD(P | |Qn)

• Measuring the quality of a point set approximation of a target
 distribution is really hard!P

Overview: measuring sample quality
with Stein’s method

• A natural approach is to use a Stein discrepancy between that
point set and the target:

SD(P | |Qn)
• This allows us to answer concretely many questions that were

previously completely intractable from a computational
viewpoint…!

Stein’s method as a computational tool
Deterministic approximations of probability
distributions

Deterministic approximations

• Suppose we have a target distribution .
• We would like a very good approximation

of the form:

P

P ≈
1
n

n

∑
i=1

δxi

Deterministic approximations

• Suppose we have a target distribution .
• We would like a very good approximation

of the form:

P

P ≈
1
n

n

∑
i=1

δxi

• The main question is:

“How should we pick the points ?”x1, …, xn

• There is lots of research on this question when
….P = Unif([0,1]d)

Monte Carlo vs quasi-Monte Carlo

• There is lots of research on this question when
….P = Unif([0,1]d)

Monte Carlo vs quasi-Monte Carlo

• The simplest option would be Monte Carlo; i.e. to
sample iid observation from .P

• There is lots of research on this question when
….P = Unif([0,1]d)

Monte Carlo vs quasi-Monte Carlo

• The simplest option would be Monte Carlo; i.e. to
sample iid observation from .P

• This is wasteful because it leaves lots of gaps or
clustered points..

Gap

Cluster

• There is lots of research on this question when
….P = Unif([0,1]d)

Monte Carlo vs quasi-Monte Carlo

• The simplest option would be Monte Carlo; i.e. to
sample iid observation from .P

• This is wasteful because it leaves lots of gaps or
clustered points..

Gap

Cluster

• Instead, a zoo of deterministic point sets or
sequences have been proposed under the name
Quasi-Monte Carlo.

• QMC points aim to do the following:

High-level idea behind QMC

D (P,
1
n

n

∑
i=1

δxi) → 0 n → ∞at a “fast” rate as

• QMC points aim to do the following:

High-level idea behind QMC

D (P,
1
n

n

∑
i=1

δxi) → 0 n → ∞at a “fast” rate as

• “Fast” typically means at least O (log(n)α

n)

• QMC points aim to do the following:

High-level idea behind QMC

D (P,
1
n

n

∑
i=1

δxi) → 0 n → ∞at a “fast” rate as

• “Fast” typically means at least O (log(n)α

n)
• is typically the star discrepancy.D

• The star discrepancy is a function of a dataset which
tells us how spread out these point are over the domain.

The star discrepancy

Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
= sup

B=[0,B1)×…×[0,Bd)

#points in B
n

− Vol(B)

• The star discrepancy is a function of a dataset which
tells us how spread out these point are over the domain.

The star discrepancy

Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
= sup

B=[0,B1)×…×[0,Bd)

#points in B
n

− Vol(B)

Sup over boxes anchored at origin!

• The star discrepancy is a function of a dataset which
tells us how spread out these point are over the domain.

The star discrepancy

Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
= sup

B=[0,B1)×…×[0,Bd)

#points in B
n

− Vol(B)

Sup over boxes anchored at origin!

Dataset

• The star discrepancy is a function of a dataset which
tells us how spread out these point are over the domain.

The star discrepancy

Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
= sup

B=[0,B1)×…×[0,Bd)

#points in B
n

− Vol(B)

Sup over boxes anchored at origin!

Example Box 1Dataset

• The star discrepancy is a function of a dataset which
tells us how spread out these point are over the domain.

The star discrepancy

Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
= sup

B=[0,B1)×…×[0,Bd)

#points in B
n

− Vol(B)

Sup over boxes anchored at origin!

Example Box 1Dataset

Example Box 2

• The star discrepancy is a function of a dataset which
tells us how spread out these point are over the domain.

The star discrepancy

Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
= sup

B=[0,B1)×…×[0,Bd)

#points in B
n

− Vol(B)

Sup over boxes anchored at origin!

Example Box 1Dataset

Example Box 2 Example Box 3

• The star discrepancy is a function of a dataset which
tells us how spread out these point are over the domain.

The star discrepancy

Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
= sup

B=[0,B1)×…×[0,Bd)

#points in B
n

− Vol(B)

• It can also be thought of as a measure of dissimilarity between our dataset and a !U([0,1]d)

Sup over boxes anchored at origin!

Example Box 1Dataset

Example Box 2 Example Box 3

• The star discrepancy is a convenient choice since we have that:

Low-discrepancy sequences

𝔼X∼P[f (X)] −
1
n

n

∑
i=1

f (xi) ≤ V(f) × Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)

• The star discrepancy is a convenient choice since we have that:

Low-discrepancy sequences

𝔼X∼P[f (X)] −
1
n

n

∑
i=1

f (xi) ≤ V(f) × Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
Integration error Complexity of

the function
Star discrepancy

• The star discrepancy is a convenient choice since we have that:

Low-discrepancy sequences

𝔼X∼P[f (X)] −
1
n

n

∑
i=1

f (xi) ≤ V(f) × Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
Integration error Complexity of

the function
Star discrepancy

• Low discrepancy sequences include well known constructions such as Sobol and
Halton sequences, for which we therefore have guarantees of fast convergence of
the integration error to zero!

• The star discrepancy is a convenient choice since we have that:

Low-discrepancy sequences

A major limitation of this approach is that you can only approximate !P = Unif([0,1]d)

𝔼X∼P[f (X)] −
1
n

n

∑
i=1

f (xi) ≤ V(f) × Dstar (U([0,1]d),
1
n

n

∑
i=1

δxi)
Integration error Complexity of

the function
Star discrepancy

• Low discrepancy sequences include well known constructions such as Sobol and
Halton sequences, for which we therefore have guarantees of fast convergence of
the integration error to zero!

• Choosing another discrepancy (i.e. our favourite hammer) can
lead to more practical algorithms:

Stein Points

Chen, W. Y., Mackey, L., Gorham, J., Briol, F-X., & Oates, C. J. (2018). Stein points. ICML, 1320–1350.

Chen, W. Y., Barp, A., Briol, F-X., Gorham, J., Girolami, M., Mackey, L., & Oates, C. J. (2019). Stein point Markov chain
Monte Carlo. ICML, 1737–1767.

arg min
x1,…,xn∈ℝd

KSD (P
1
n

n

∑
i=1

δxi)
• This is still a very high-dimensional and non-convex optimisation

problem, so we need to introduce some approximation….

• We choose points one at a time to
decrease the KSD the most.

Greedy Stein Points

• Thanks to the nice expression for the KSD,
this simply becomes:

xn ∈ arg min
x∈ℝd

KSD (P
1
n

n−1

∑
i=1

δxi
+

1
n

δx)

Example: 2d-Gaussian.
= arg min

x∈ℝd

kP(x, x)
2

+
n−1

∑
i=1

kP(xi, x)

• We choose points one at a time to
decrease the KSD the most.

Greedy Stein Points

• Thanks to the nice expression for the KSD,
this simply becomes:

xn ∈ arg min
x∈ℝd

KSD (P
1
n

n−1

∑
i=1

δxi
+

1
n

δx)

Example: 2d-Gaussian.
= arg min

x∈ℝd

kP(x, x)
2

+
n−1

∑
i=1

kP(xi, x)

Greedy Stein Points on Gaussian

𝔼X∼P[f(X)] = ?

f(x) = sin(x1) + sin(x2) P = N(0,I2×2)

Greedy Stein Points on Gaussian

𝔼X∼P[f(X)] = ?

f(x) = sin(x1) + sin(x2) P = N(0,I2×2)

Greedy Stein Points on Gaussian

𝔼X∼P[f(X)] = ?

f(x) = sin(x1) + sin(x2) P = N(0,I2×2)
Convergence is much
faster for Stein Points
than Monte Carlo!

Stein Points for complex targets
SP-MCMCMCMC

• One of the main advantages of Stein points is
that we can approximate any distribution for
which we have a suitable Stein characterisation!

• This includes complex probabilistic models, or
Bayesian posterior distributions!

P

https://github.com/wilson-ye-chen/stein_points

https://github.com/wilson-ye-chen/sp-mcmc

Example: IGARCH posterior

yt = σtϵt, ϵt ∼ N(0,1)

σ2
t = θ1 + θ2y2

t−1 + (1 − θ2)σ2
t−1

• Consider some Bayesian posterior for the following
time-series model:

Log # evaluation of p

Lo
g

W
as

se
rs

te
in

 e
rr

or

Example: IGARCH posterior

yt = σtϵt, ϵt ∼ N(0,1)

σ2
t = θ1 + θ2y2

t−1 + (1 − θ2)σ2
t−1

• Consider some Bayesian posterior for the following
time-series model:

• Stein points give much smaller
Wasserstein distance
approximation than MCMC!

Log # evaluation of p

Lo
g

W
as

se
rs

te
in

 e
rr

or

Example: IGARCH posterior

yt = σtϵt, ϵt ∼ N(0,1)

σ2
t = θ1 + θ2y2

t−1 + (1 − θ2)σ2
t−1

• Consider some Bayesian posterior for the following
time-series model:

Log # evaluation of p
Lo

g
en

er
gy

 d
is

ta
nc

e
er

ro
r

Example: IGARCH posterior

yt = σtϵt, ϵt ∼ N(0,1)

σ2
t = θ1 + θ2y2

t−1 + (1 − θ2)σ2
t−1

• Consider some Bayesian posterior for the following
time-series model:

• Advanced versions of Stein
Points can do much better…

Log # evaluation of p
Lo

g
en

er
gy

 d
is

ta
nc

e
er

ro
r

Stein’s method as a computational tool
Stein Variational Gradient Descent

Particle-based approximations

Particle-based approximations

[Credit: Qiang Liu (UT Austin)
https://www.cs.utexas.edu/
~qlearning/project.html?
p=svgd]

• We are still interested in approximating some
distribution .P

• This time, we start with some particles which
we then move towards P.

https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D

Particle-based approximations

[Credit: Qiang Liu (UT Austin)
https://www.cs.utexas.edu/
~qlearning/project.html?
p=svgd]

• We are still interested in approximating some
distribution .P

• This time, we start with some particles which
we then move towards P.

https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D

Particle-based approximations

[Credit: Qiang Liu (UT Austin)
https://www.cs.utexas.edu/
~qlearning/project.html?
p=svgd]

• We are still interested in approximating some
distribution .P

Φg(x) = x + ϵg(x)

• The idea is to define a map, and to
recursively transport particles through this
map towards :P

• This time, we start with some particles which
we then move towards P.

https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D

Particle-based approximations

[Credit: Qiang Liu (UT Austin)
https://www.cs.utexas.edu/
~qlearning/project.html?
p=svgd]

• We are still interested in approximating some
distribution .P

Φg(x) = x + ϵg(x)

• The idea is to define a map, and to
recursively transport particles through this
map towards :P

• This time, we start with some particles which
we then move towards P.

Step-size Direction of moveCurrent
Position

https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D
https://www.cs.utexas.edu/~qlearning/project.html?p=svgd%5D

SVGD as transport of measure

max
g∈𝒢 {−

d
dϵ

KL (Φg
#Q | |P)

ϵ=0 } = KSD(P | |Q)

• The algorithm mostly relies on this identity:

where Φg(x) = x + ϵg(x)

Once again we are using our hammer….

SVGD as transport of measure

max
g∈𝒢 {−

d
dϵ

KL (Φg
#Q | |P)

ϵ=0 } = KSD(P | |Q)

• The algorithm mostly relies on this identity:

where Φg(x) = x + ϵg(x)
The rate of decrease of the
KL divergence under the
transport map Φg

Once again we are using our hammer….

SVGD as transport of measure

max
g∈𝒢 {−

d
dϵ

KL (Φg
#Q | |P)

ϵ=0 } = KSD(P | |Q)

• The algorithm mostly relies on this identity:

where Φg(x) = x + ϵg(x)
The rate of decrease of the
KL divergence under the
transport map Φg

• The best transport map is therefore the function:
g*Q,P(⋅) ∝ 𝔼X∼Q[∇log p(X)k(X, ⋅) + ∇xk(X, ⋅)]

Once again we are using our hammer….

Stein variational gradient descent (SVGD)
• We should therefore move as follows:

Φ*(x) = x+ϵg*Q,P(x) = x+ϵ𝔼X∼Q[∇log p(X)k(X, x) + ∇xk(X, x)]

Stein variational gradient descent (SVGD)
• We should therefore move as follows:

Φ*(x) = x+ϵg*Q,P(x) = x+ϵ𝔼X∼Q[∇log p(X)k(X, x) + ∇xk(X, x)]

xt+1
i ← xt

i+ϵ
1
n

n

∑
j=1

∇log p(xt
j)(1 × k(xt

j , xt
i)) + ∇xj

k(xt
j , xt

i)

for every iteration .t = 1,2,…, T

• In practice, we do not have but a particle approximation:Q

Stein variational gradient descent (SVGD)
• We should therefore move as follows:

Φ*(x) = x+ϵg*Q,P(x) = x+ϵ𝔼X∼Q[∇log p(X)k(X, x) + ∇xk(X, x)]

xt+1
i ← xt

i+ϵ
1
n

n

∑
j=1

∇log p(xt
j)(1 × k(xt

j , xt
i)) + ∇xj

k(xt
j , xt

i)

for every iteration .t = 1,2,…, T

• In practice, we do not have but a particle approximation:Q

Pushes particles towards
regions of high prob under P

Pushes particles away from
one another (“repulsive force”)

SVGD in practice

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=SVGD

http://www.apple.com/uk
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=SVGD

Stein’s method as a computational tool
Thinning MCMC

Thinning MCMC

p(y* |x*, x1, …, xn, y1, …, yn)

= ∫Θ
p(y* |x*, θ)p(θ |x1, …, xn, y1, …, yn)dθ

• Suppose we would like to compute some
predictive distribution:

Thinning MCMC

p(y* |x*, x1, …, xn, y1, …, yn)

= ∫Θ
p(y* |x*, θ)p(θ |x1, …, xn, y1, …, yn)dθ

Expensive likelihood Posterior distribution
(approximated with samples)

• Suppose we would like to compute some
predictive distribution:

Thinning MCMC

p(y* |x*, x1, …, xn, y1, …, yn)

= ∫Θ
p(y* |x*, θ)p(θ |x1, …, xn, y1, …, yn)dθ

Expensive likelihood Posterior distribution
(approximated with samples)

• Suppose we would like to compute some
predictive distribution:

• Clearly we do not want to have a very long chain as this will otherwise
be very expensive!

Thinning MCMC

p(y* |x*, x1, …, xn, y1, …, yn)

= ∫Θ
p(y* |x*, θ)p(θ |x1, …, xn, y1, …, yn)dθ

Expensive likelihood Posterior distribution
(approximated with samples)

• Suppose we would like to compute some
predictive distribution:

• Clearly we do not want to have a very long chain as this will otherwise
be very expensive!

• Solution: Thinning our MCMC sampler!

Thinning MCMC
• The simplest method is independent sub-sampling.

• …but the independence can be quite wasteful as we might
end up with some very similar samples!

Thinning MCMC
• The simplest method is independent sub-sampling.

• …but the independence can be quite wasteful as we might
end up with some very similar samples!

We ideally want an approximation
where points are far from one another
but concentrated in region of high
probability mass…

Stein thinning

arg min
{xi}n

i=1⊂{yi}N
i=1

KSD (P
1
n

n

∑
i=1

δxi)

Riabiz, M., Chen, W., Cockayne, J., Swietach, P., Niederer, S. A., Mackey, L., & Oates, C. J. (2022). Optimal
thinning of MCMC output. JRSSB, 84(4), 1059–1081.

• Let’s use our favourite hammer on this nail:

Stein thinning

arg min
{xi}n

i=1⊂{yi}N
i=1

KSD (P
1
n

n

∑
i=1

δxi)

Riabiz, M., Chen, W., Cockayne, J., Swietach, P., Niederer, S. A., Mackey, L., & Oates, C. J. (2022). Optimal
thinning of MCMC output. JRSSB, 84(4), 1059–1081.

• Let’s use our favourite hammer on this nail:

Original approximation of P

Stein thinning

arg min
{xi}n

i=1⊂{yi}N
i=1

KSD (P
1
n

n

∑
i=1

δxi)

Riabiz, M., Chen, W., Cockayne, J., Swietach, P., Niederer, S. A., Mackey, L., & Oates, C. J. (2022). Optimal
thinning of MCMC output. JRSSB, 84(4), 1059–1081.

• Let’s use our favourite hammer on this nail:

Original approximation of PSub-sample

Stein thinning

arg min
{xi}n

i=1⊂{yi}N
i=1

KSD (P
1
n

n

∑
i=1

δxi)

Riabiz, M., Chen, W., Cockayne, J., Swietach, P., Niederer, S. A., Mackey, L., & Oates, C. J. (2022). Optimal
thinning of MCMC output. JRSSB, 84(4), 1059–1081.

• Let’s use our favourite hammer on this nail:

• Similarly to Stein points, this is usually intractable so we select
one point at a time.

Original approximation of PSub-sample

Stein thinning in practice

[https://en.wikipedia.org/wiki/File:Stein_Thinning_of_MCMC_output.webm]

https://en.wikipedia.org/wiki/File:Stein_Thinning_of_MCMC_output.webm

Stein’s method as a computational tool
Importance sampling

Importance sampling
• Sometimes we want to sample from but cannot do so…P

Importance sampling
• Sometimes we want to sample from but cannot do so…P

• Importance sampling proposes to sample from , then weight the samples
to correct from the fact that we are sampling from the wrong distribution

P′

Importance sampling
• Sometimes we want to sample from but cannot do so…P

• Importance sampling proposes to sample from , then weight the samples
to correct from the fact that we are sampling from the wrong distribution

P′

Target distribution P

Importance sampling
• Sometimes we want to sample from but cannot do so…P

• Importance sampling proposes to sample from , then weight the samples
to correct from the fact that we are sampling from the wrong distribution

P′

Target distribution P Importance distribution

Importance sampling
• Sometimes we want to sample from but cannot do so…P

• Importance sampling proposes to sample from , then weight the samples
to correct from the fact that we are sampling from the wrong distribution

P′

Target distribution P Importance distribution IIID realisations from
importance distribution

Importance sampling
• Sometimes we want to sample from but cannot do so…P

• Importance sampling proposes to sample from , then weight the samples
to correct from the fact that we are sampling from the wrong distribution

P′

Target distribution P Importance distribution IIID realisations from
importance distribution

Weighted samples from
target distribution

Importance sampling

𝔼X∼P[f(X)] = ∫ f(x)p(x)dx

• To find the appropriate weights, we can use the following derivation:

Importance sampling

= ∫ f(x)
p(x)
p′ (x)

p′ (x)dx𝔼X∼P[f(X)] = ∫ f(x)p(x)dx

• To find the appropriate weights, we can use the following derivation:

Importance sampling

= ∫ f(x)
p(x)
p′ (x)

p′ (x)dx𝔼X∼P[f(X)] = ∫ f(x)p(x)dx

• To find the appropriate weights, we can use the following derivation:

= 𝔼X∼P′ [w(X)f(X)]

w(x) =
p(x)
p′ (x)

Importance sampling

= ∫ f(x)
p(x)
p′ (x)

p′ (x)dx ≈
1
n

n

∑
i=1

w(xi)f(xi)𝔼X∼P[f(X)] = ∫ f(x)p(x)dx

• To find the appropriate weights, we can use the following derivation:

= 𝔼X∼P′ [w(X)f(X)]

w(x) =
p(x)
p′ (x)

Importance sampling

= ∫ f(x)
p(x)
p′ (x)

p′ (x)dx ≈
1
n

n

∑
i=1

w(xi)f(xi)𝔼X∼P[f(X)] = ∫ f(x)p(x)dx

• To find the appropriate weights, we can use the following derivation:

= 𝔼X∼P′ [w(X)f(X)]

w(x) =
p(x)
p′ (x)

• This is at the core of many algorithms in computational statistics such as
sequential Monte Carlo, variational inference, simulation-based inference, etc..

Importance sampling

= ∫ f(x)
p(x)
p′ (x)

p′ (x)dx ≈
1
n

n

∑
i=1

w(xi)f(xi)𝔼X∼P[f(X)] = ∫ f(x)p(x)dx

• To find the appropriate weights, we can use the following derivation:

= 𝔼X∼P′ [w(X)f(X)]

w(x) =
p(x)
p′ (x)

• This is at the core of many algorithms in computational statistics such as
sequential Monte Carlo, variational inference, simulation-based inference, etc..

• Question: “This choice of weights gives us good Monte Carlo estimators, but
is it the best possible way to weight our samples?”

Stein importance sampling

Liu, Q., & Lee, J. D. (2017). Black-box importance sampling. AISTATS, 952–961.

Wang, C., Chen, W., Kanagawa, H., & Oates, C. J. (2023). Stein -Importance Sampling. NeurIPS.Π

arg min
w1,…,wn≥0,∑n

i=1 wi=1
KSD (P

n

∑
i=1

wiδxi)Stage 2:

Stage 1: Sample from some proposal x1, …, xn P′

Stein importance sampling

Liu, Q., & Lee, J. D. (2017). Black-box importance sampling. AISTATS, 952–961.

Wang, C., Chen, W., Kanagawa, H., & Oates, C. J. (2023). Stein -Importance Sampling. NeurIPS.Π

arg min
w1,…,wn≥0,∑n

i=1 wi=1
KSD (P

n

∑
i=1

wiδxi)Stage 2:

Stage 1: Sample from some proposal x1, …, xn P′

Gives a stable set of weights, and exact
estimation for constant functions

Stein importance sampling

Liu, Q., & Lee, J. D. (2017). Black-box importance sampling. AISTATS, 952–961.

Wang, C., Chen, W., Kanagawa, H., & Oates, C. J. (2023). Stein -Importance Sampling. NeurIPS.Π

arg min
w1,…,wn≥0,∑n

i=1 wi=1
KSD (P

n

∑
i=1

wiδxi)Stage 2:

Stage 1: Sample from some proposal x1, …, xn P′

Gives a stable set of weights, and exact
estimation for constant functions

• A standard approach for the proposal is to use a Markov chain which approximates
the target (or close enough).

P′

P

Stein importance sampling with
different kernels

[Wang, 2023]

• We have seen many approaches (importance sampling, thinning,
deterministic, gradient flows) to getting a good point set
approximation of a target:

Overview: point set approximation with
Stein’s method

P ≈
n

∑
i=1

wiδxi

• We have seen many approaches (importance sampling, thinning,
deterministic, gradient flows) to getting a good point set
approximation of a target:

Overview: point set approximation with
Stein’s method

P ≈
n

∑
i=1

wiδxi

Having a computable Stein discrepancy which can be used
for most ’s with unnormalised densities is a real asset here!P

Stein’s method as a computational tool
Control variates for Monte Carlo

Monte Carlo methods
• We have already discussed extensively the need for good estimators of:

𝔼X∼P[f(X)] ≈
1
n

n

∑
i=1

f(xi)

Monte Carlo methods

n (𝔼X∼P[f(X)] −
1
n

n

∑
i=1

f(xi)) → N(0,Var[f])

• To know how well this will perform, we can look at the central limit theorem:

• We have already discussed extensively the need for good estimators of:

𝔼X∼P[f(X)] ≈
1
n

n

∑
i=1

f(xi)

Monte Carlo methods

n (𝔼X∼P[f(X)] −
1
n

n

∑
i=1

f(xi)) → N(0,Var[f])

• To know how well this will perform, we can look at the central limit theorem:

Var[f] = 𝔼X∼P [(f(X) − 𝔼X∼P[f(X)])2]

• We have already discussed extensively the need for good estimators of:

𝔼X∼P[f(X)] ≈
1
n

n

∑
i=1

f(xi)

Monte Carlo methods

n (𝔼X∼P[f(X)] −
1
n

n

∑
i=1

f(xi)) → N(0,Var[f])

• To know how well this will perform, we can look at the central limit theorem:

Var[f] = 𝔼X∼P [(f(X) − 𝔼X∼P[f(X)])2]If is “complicated” where assigns a
lot of mass, this will be large!

f P

• We have already discussed extensively the need for good estimators of:

𝔼X∼P[f(X)] ≈
1
n

n

∑
i=1

f(xi)

Monte Carlo methods

n (𝔼X∼P[f(X)] −
1
n

n

∑
i=1

f(xi)) → N(0,Var[f])

• To know how well this will perform, we can look at the central limit theorem:

Var[f] = 𝔼X∼P [(f(X) − 𝔼X∼P[f(X)])2]If is “complicated” where assigns a
lot of mass, this will be large!

f P

• The above is for standard Monte Carlo, but similar results hold for MCMC, QMC, etc…

• We have already discussed extensively the need for good estimators of:

𝔼X∼P[f(X)] ≈
1
n

n

∑
i=1

f(xi)

The control variate trick
• Suppose we have a function for which and is known. h 𝔼X∼P[h(X)] = c c

The control variate trick
• Suppose we have a function for which and is known. h 𝔼X∼P[h(X)] = c c

𝔼X∼P[f(X)]

• Then we could rewrite our integral as follows:

The control variate trick

= 𝔼X∼P[f(X)]+𝔼X∼P[h(X)] − 𝔼X∼P[h(X)]

• Suppose we have a function for which and is known. h 𝔼X∼P[h(X)] = c c

𝔼X∼P[f(X)]

• Then we could rewrite our integral as follows:

The control variate trick

= 𝔼X∼P[f(X)]+𝔼X∼P[h(X)] − 𝔼X∼P[h(X)] = 𝔼X∼P[f(X) − h(X)] + c

• Suppose we have a function for which and is known. h 𝔼X∼P[h(X)] = c c

𝔼X∼P[f(X)]

• Then we could rewrite our integral as follows:

The control variate trick

= 𝔼X∼P[f(X)]+𝔼X∼P[h(X)] − 𝔼X∼P[h(X)] = 𝔼X∼P[f(X) − h(X)] + c

• Suppose we have a function for which and is known. h 𝔼X∼P[h(X)] = c c

𝔼X∼P[f(X)]

• Then we could rewrite our integral as follows:

• We therefore have a choice of estimator:

𝔼X∼P[f(X)] ≈
1
n

n

∑
i=1

f(xi) 𝔼X∼P[f(X)] ≈
1
n

n

∑
i=1

(f(xi) − h(xi)) + c

Estimator 1: Monte Carlo: Estimator 2: Control Variate

The control variate (CV)!

A sketch of control variate
estimators

Integrand f

A sketch of control variate
estimators

Integrand f Step 1: Find control variate
with known

h
𝔼X∼P[h(X)]

A sketch of control variate
estimators

Integrand f Step 1: Find control variate
with known

h
𝔼X∼P[h(X)]

Step 2: Estimate
with a Monte Carlo estimator

𝔼X∼P[f(X) − h(X)]

A sketch of control variate
estimators

Integrand f Step 1: Find control variate
with known

h
𝔼X∼P[h(X)]

Step 2: Estimate
with a Monte Carlo estimator

𝔼X∼P[f(X) − h(X)]

Turns out that if we choose carefully, then the Monte Carlo estimator of
will be much more accurate than the Monte Carlo estimator of

h f − h
f

Existing control variates
• Using the CLT, we see that the accuracy of control variate estimators depend on

Var[f − h]

• This leads to a few key questions:

“How do we guarantee that ?”Var[f − h] ≪ Var[f]

“Can we choose to minimise ?”h Var[f − h]

“How do we guarantee that we know the integral of ?”h

Existing methods

• Problem: In general it is really hard to find a function with known
.

h : ℝd → ℝ
EX∼P[h(X)]

Existing methods

• Problem: In general it is really hard to find a function with known
.

h : ℝd → ℝ
EX∼P[h(X)]

• Existing methods focus on simple distributions such as a Gaussian or a
uniform and simple , such as a polynomial.

• This is severely limiting for computational statistics or machine learning….

P
h

Existing methods

• Problem: In general it is really hard to find a function with known
.

h : ℝd → ℝ
EX∼P[h(X)]

• Existing methods focus on simple distributions such as a Gaussian or a
uniform and simple , such as a polynomial.

• This is severely limiting for computational statistics or machine learning….

P
h

Question: What are we supposed to do when is more complicated?P

Stein control variates

hθ(x) = 𝒮P[gθ](x) + θ0

• Given the focus of this course, it should be obvious that we can pick:

Stein control variates

hθ(x) = 𝒮P[gθ](x) + θ0 𝔼X∼P[hθ(X)] = 𝔼X∼P[𝒮P[gθ](X)] + θ0 = θ0

• Given the focus of this course, it should be obvious that we can pick:

Stein control variates

hθ(x) = 𝒮P[gθ](x) + θ0 𝔼X∼P[hθ(X)] = 𝔼X∼P[𝒮P[gθ](X)] + θ0 = θ0

• can be a family of polynomials, neural networks, an RKHS, etc… so long as
this family is a subset of the corresponding Stein class !
{gθ : θ ∈ Θ}

𝒢P

• Given the focus of this course, it should be obvious that we can pick:

Stein control variates

hθ(x) = 𝒮P[gθ](x) + θ0 𝔼X∼P[hθ(X)] = 𝔼X∼P[𝒮P[gθ](X)] + θ0 = θ0

• can be a family of polynomials, neural networks, an RKHS, etc… so long as
this family is a subset of the corresponding Stein class !
{gθ : θ ∈ Θ}

𝒢P

• Given the focus of this course, it should be obvious that we can pick:

• Initial work in Bayesian computation mostly used the equivalent of polynomial-based Stein
control variates without realising they were using Stein!

Mira, A., Solgi, R., & Imparato, D. (2013). Zero variance Markov chain Monte Carlo for Bayesian estimators. Statistics and
Computing, 23(5), 653–662.

Papamarkou, T., Mira, A., & Girolami, M. (2014). Zero variance differential geometric Markov chain Monte Carlo algorithms.
Bayesian Analysis, 9(1), 97–128.

Elements of Stein RKHS

[Oates et al 2017, JRSSB]
Oates, C. J., Girolami, M., & Chopin, N. (2017). Control functionals for Monte Carlo integration.

Journal of the Royal Statistical Society B: Statistical Methodology, 79(3), 695–718.

Oates, C. J., Cockayne, J., Briol, F.-X., & Girolami, M. (2019). Convergence rates for a class of
estimators based on Stein’s identity. Bernoulli, 25(2), 1141–1159.

• Recall that we can take an RKHS and create a new one by
applying a Stein operator to functions in the space:

ℋk

𝒮P[g](x), g ∈ ℋd
k

• This leads to the RKHS with kernel given by:kP

kp(x, x′) = 𝒮x
P𝒮x′

P[k](x, x′)

South, L. F., Karvonen, T., Nemeth, C., Girolami, M., & Oates, C. J. (2022). Semi-exact control functionals from Sard’s method.
Biometrika, 109, 351–367.

Stein Neural Networks

Ott, K., Tiemann, M., Hennig, P., & Briol, F.-X. (2023). Bayesian numerical integration with neural networks. UAI, 1606–1617.

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2021). Scalable control variates for Monte Carlo methods via
stochastic optimization. Proceedings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.

Sun, Z., Oates, C. J., & Briol, F.-X. (2023). Meta-learning control variates: Variance reduction with limited data. UAI, 2047–2057.

• We can also take our favourite (sufficiently smooth) neural network
 and apply a Stein operator to the output.

• To use the language in this field, we can add a “Stein layer”.
gθ : ℝd → ℝd

Stein Neural Networks

Ott, K., Tiemann, M., Hennig, P., & Briol, F.-X. (2023). Bayesian numerical integration with neural networks. UAI, 1606–1617.

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2021). Scalable control variates for Monte Carlo methods via
stochastic optimization. Proceedings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.

Sun, Z., Oates, C. J., & Briol, F.-X. (2023). Meta-learning control variates: Variance reduction with limited data. UAI, 2047–2057.

• We can also take our favourite (sufficiently smooth) neural network
 and apply a Stein operator to the output.

• To use the language in this field, we can add a “Stein layer”.
gθ : ℝd → ℝd

Output is in ℝ

Input is in ℝd

Stein layer 𝒮p[]
gθ(x) ∈ ℝd

Stein CVs as empirical risk minimisation

J(θ) = Var[f − hθ] = Var[f − 𝒮P[gθ](x) − θ0]

• Clearly a natural objective to choose our control variate is:

Stein CVs as empirical risk minimisation

J(θ) = Var[f − hθ] = Var[f − 𝒮P[gθ](x) − θ0]

• Clearly a natural objective to choose our control variate is:

Jm(θ) = ̂Varm [f − hθ]

• Since this objective is intractable, we can approximate it with samples:

Stein CVs as empirical risk minimisation

J(θ) = Var[f − hθ] = Var[f − 𝒮P[gθ](x) − θ0]

• Clearly a natural objective to choose our control variate is:

Jm(θ) = ̂Varm [f − hθ]

• Since this objective is intractable, we can approximate it with samples:

=
1
m

m

∑
j=1

(f(xj) − hθ(xj))2

Stein CVs as empirical risk minimisation

J(θ) = Var[f − hθ] = Var[f − 𝒮P[gθ](x) − θ0]

• Clearly a natural objective to choose our control variate is:

Jm(θ) = ̂Varm [f − hθ]

• Since this objective is intractable, we can approximate it with samples:

=
1
m

m

∑
j=1

(f(xj) − hθ(xj))2

̂θm = arg min
θ∈Θ

Jm(θ)
• We then choose our control variate as follows:

h ̂θm
(x)

Linear Stein CVs

• We note that Stein operators are usually linear operators, meaning that

θ ↦ hθ(x)
will be linear so long as is also linear!θ ↦ gθ(x)

Linear Stein CVs

• We note that Stein operators are usually linear operators, meaning that

θ ↦ hθ(x)
will be linear so long as is also linear!θ ↦ gθ(x)

• This is the case for polynomials or for kernels, but not for neural networks.

Linear Stein CVs

• We note that Stein operators are usually linear operators, meaning that

θ ↦ hθ(x)
will be linear so long as is also linear!θ ↦ gθ(x)

• This is the case for polynomials or for kernels, but not for neural networks.

• The great advantage of linear Stein CVs is that becomes a
quadratic function in and can hence be solved through a linear system
(we are essentially doing least squares)!

θ ↦ Jm(θ)
θ

Stochastic optimisation for linear Stein
CVs: a toy problem

• Of course another approach is to use gradient-based optimisation, such as
stochastic gradient descent…

f(x) = x1 + … + xd

P = 𝒩(0,Id)

Half of the samples were
used for learning the CV, the
other half for the estimator

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2021). Scalable control variates for Monte Carlo methods via stochastic optimization.
Proceedings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.

Stochastic optimisation for linear Stein
CVs: a toy problem

• Of course another approach is to use gradient-based optimisation, such as
stochastic gradient descent…

Solving linear systemStochastic optimisation

f(x) = x1 + … + xd

P = 𝒩(0,Id)

Half of the samples were
used for learning the CV, the
other half for the estimator

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2021). Scalable control variates for Monte Carlo methods via stochastic optimization.
Proceedings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.

Posterior inference for ODE system

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2021). Scalable control variates for Monte Carlo methods via stochastic optimization.
Proceedings of the 14th Conference on Monte Carlo and Quasi-Monte Carlo Methods.

·x = αx − βxy ·y = δxy − γy

(Half of the samples were used for
learning the CV, the other half for
the estimator)

Computing expectations under the posterior for given
some observations of the following Lotka-Volterra ODE system:

(α, β, δ, γ)

Multiple related integrals

Sun, Z., Oates, C. J., & Briol, F.-X. (2023). Meta-learning control variates: Variance reduction with limited data. UAI, 2047–2057.

Sun, Z., Barp, A., & Briol, F.-X. (2023). Vector-valued control variates. ICML, 32819–32846.

𝔼X∼P1
[f1(X)], …, 𝔼X∼PT

[fT(X)]

• In some situations, we have to estimate several
integrals either sequentially or simultaneously:

Multiple related integrals

Sun, Z., Oates, C. J., & Briol, F.-X. (2023). Meta-learning control variates: Variance reduction with limited data. UAI, 2047–2057.

Sun, Z., Barp, A., & Briol, F.-X. (2023). Vector-valued control variates. ICML, 32819–32846.

𝔼X∼P1
[f1(X)], …, 𝔼X∼PT

[fT(X)]

• In some situations, we have to estimate several
integrals either sequentially or simultaneously:

• These could be estimated separately, but sharing information across tasks can
significantly improve the accuracy.

Multiple related integrals

Sun, Z., Oates, C. J., & Briol, F.-X. (2023). Meta-learning control variates: Variance reduction with limited data. UAI, 2047–2057.

Sun, Z., Barp, A., & Briol, F.-X. (2023). Vector-valued control variates. ICML, 32819–32846.

𝔼X∼P1
[f1(X)], …, 𝔼X∼PT

[fT(X)]

• In some situations, we have to estimate several
integrals either sequentially or simultaneously:

• These could be estimated separately, but sharing information across tasks can
significantly improve the accuracy.

• Thankfully Stein’s method can be extended to vector-valued functions to
create control variates suitable for tackling this task!

• The accuracy of Monte Carlo methods can be significantly
improved through control variates, but finding a good control
variate can be very hard.

Overview: numerical integration with
Stein’s method

• The accuracy of Monte Carlo methods can be significantly
improved through control variates, but finding a good control
variate can be very hard.

Overview: numerical integration with
Stein’s method

Stein’s method allows us to create very flexible classes of
control variates for a very broad variety of applications!

Stein’s method as a computational tool
Beyond Euclidean domains

A computational tool beyond
Euclidean spaces…

• Recall our favourite Stein operator:

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

A computational tool beyond
Euclidean spaces…

• Recall our favourite Stein operator:

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

• This is only valid when the domain/data space is …!𝒳 = ℝd

A computational tool beyond
Euclidean spaces…

• Recall our favourite Stein operator:

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

• This is only valid when the domain/data space is …!𝒳 = ℝd

• But often we want to do statistics with data which is in ; e.g.
categorical data, count data, manifold-valued data, functional data…

ℝd

A computational tool beyond
Euclidean spaces…

• Recall our favourite Stein operator:

𝒯[g](x) := ⟨∇xlog p(x), g(x)⟩ + ⟨∇, g(x)⟩

• This is only valid when the domain/data space is …!𝒳 = ℝd

• But often we want to do statistics with data which is in ; e.g.
categorical data, count data, manifold-valued data, functional data…

ℝd

None of the tools we have seen so far work….

Stein on bounded subsets of
Euclidean space

𝔼X∼P [𝒯[g](X)] = ∫ℝd

𝒯[g](x)p(x)dx = 0

• The defining property of the Langevin Stein operator is:

Stein on bounded subsets of
Euclidean space

𝔼X∼P [𝒯[g](X)] = ∫ℝd

𝒯[g](x)p(x)dx = 0

• The defining property of the Langevin Stein operator is:

• But what if instead we have a model defined only on positive values:

∫ℝd
+

𝒯[g](x)p(x)dx ≠ 0

Stein on bounded subsets of
Euclidean space

𝔼X∼P [𝒯[g](X)] = ∫ℝd

𝒯[g](x)p(x)dx = 0

• The defining property of the Langevin Stein operator is:

• But what if instead we have a model defined only on positive values:

∫ℝd
+

𝒯[g](x)p(x)dx ≠ 0

• There are plenty of cases where our models/data does not have full
support, but where and this is a strict subset.𝒳 ⊂ ℝd

Stein on bounded subsets of
Euclidean space

Oates, C. J., Cockayne, J., Briol, F.-X., & Girolami, M. (2019). Convergence rates for a class of estimators
based on Stein’s identity. Bernoulli, 25(2), 1141–1159.

Williams, D. J., & Liu, S. (2023). Approximate Stein Classes for truncated density estimation. International
Conference on Machine Learning.

• A straightforward solution in this case is to use a modified
RKHS as the Stein space:

k̃(x, x′) = δ(x)k(x, x′)δ(x′)

δ(x) = 0 for x ∈ ∂𝒳
• Where we enforce that the kernel vanishes on the boundary:

Stein on discrete spaces

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2024+). Generalised Bayesian inference for discrete
intractable likelihood. JASA (to appear).

Shi, J., Zhou, Y., Hwang, J., Titsias, M. K., & Mackey, L. (2022). Gradient estimation with discrete Stein
operators. NeurIPS.

Yang, J., Liu, Q., Rao, V., & Neville, J. (2018). Goodness-of-fit testing for discrete distributions via Stein
discrepancy. ICML.

[Matsubara et al., 2024+]

SP[g](x) = ⟨ ∇−p(x)
p(x)

, g(x)⟩ + ⟨∇+, g(x)⟩𝒳 = 𝒮1 × … × 𝒮d

 is a countable ordered set𝒮i

Stein on discrete spaces

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2024+). Generalised Bayesian inference for discrete
intractable likelihood. JASA (to appear).

Shi, J., Zhou, Y., Hwang, J., Titsias, M. K., & Mackey, L. (2022). Gradient estimation with discrete Stein
operators. NeurIPS.

Yang, J., Liu, Q., Rao, V., & Neville, J. (2018). Goodness-of-fit testing for discrete distributions via Stein
discrepancy. ICML.

[Matsubara et al., 2024+]

SP[g](x) = ⟨ ∇−p(x)
p(x)

, g(x)⟩ + ⟨∇+, g(x)⟩

∇+g(x) =
g(x1+) − g(x)

…
g(xd+) − g(x)

∇−g(x) =
g(x1−) − g(x)

…
g(xd−) − g(x)

𝒳 = 𝒮1 × … × 𝒮d

 is a countable ordered set𝒮i

Stein on manifolds

Xu, W., & Matsuda, T. (2020). A Stein goodness-of-fit test for directional distributions. AISTATS.

Xu, W., & Matsuda, T. (2021). Interpretable Stein goodness-of-fit tests on Riemannian manifolds. ICML.

Barp, A., Oates, C. J., Porcu, E., & Girolami, M. (2022). A Riemannian–Stein kernel method. Bernoulli,
28(4), 2181–2208.

[Barp et al., 2022]

• Sometimes we also want to consider data on manifolds
(e.g. spheres, positive definite matrices, etc…)

Stein on manifolds

Xu, W., & Matsuda, T. (2020). A Stein goodness-of-fit test for directional distributions. AISTATS.

Xu, W., & Matsuda, T. (2021). Interpretable Stein goodness-of-fit tests on Riemannian manifolds. ICML.

Barp, A., Oates, C. J., Porcu, E., & Girolami, M. (2022). A Riemannian–Stein kernel method. Bernoulli,
28(4), 2181–2208.

[Barp et al., 2022]

• Sometimes we also want to consider data on manifolds
(e.g. spheres, positive definite matrices, etc…)

• Once again the generator approach comes to the rescue:
we just need a Markov process defined on this space….

• There are abundant choices available from physics and
computational chemistry literatures!

Stein on function spaces

Wynne, G., Kasprzak, M., & Duncan, A. B. (2024+). A spectral representation of kernel Stein discrepancy with
application to goodness-of-fit tests for measures on infinite dimensional Hilbert spaces. Bernoulli (to appear).

• is a space of function (e.g. time series, spatial measurements, etc…).𝒳

Stein on function spaces

Wynne, G., Kasprzak, M., & Duncan, A. B. (2024+). A spectral representation of kernel Stein discrepancy with
application to goodness-of-fit tests for measures on infinite dimensional Hilbert spaces. Bernoulli (to appear).

• is a space of function (e.g. time series, spatial measurements, etc…).𝒳

x1(t) x2(t) …

Magnetic
field in
Honolulu

Stein on function spaces

Wynne, G., Kasprzak, M., & Duncan, A. B. (2024+). A spectral representation of kernel Stein discrepancy with
application to goodness-of-fit tests for measures on infinite dimensional Hilbert spaces. Bernoulli (to appear).

• is a space of function (e.g. time series, spatial measurements, etc…).𝒳

x1(t) x2(t) …

Magnetic
field in
Honolulu

x1(t) x2(t) …

Microsoft
stock price
in May 2006

[Kokoska, 2017]

Stein on function spaces

Wynne, G., Kasprzak, M., & Duncan, A. B. (2024+). A spectral representation of kernel Stein discrepancy with
application to goodness-of-fit tests for measures on infinite dimensional Hilbert spaces. Bernoulli (to appear).

• is a space of function (e.g. time series, spatial measurements, etc…).𝒳

• Once again the generator approach comes to the rescue - we can use the
generator of a Wiener process with a carefully selected kernel.

x1(t) x2(t) …

Magnetic
field in
Honolulu

x1(t) x2(t) …

Microsoft
stock price
in May 2006

[Kokoska, 2017]

Stein on graphs

Xu, W., & Reinert, G. (2021). A Stein goodness of fit test for exponential random graph models. AISTATS.

Xu, W., & Reinert, G. (2022). AgraSSt: Approximate graph Stein statistics for interpretable assessment of
implicit graph generators. NeurIPS.

[Xu & Reinert 2022]

• A lot less straightforward to write on a
slide, but is based on the generator
approach of Barbour…

• The exact operator is based on
Glauber dynamics which allows you to
simulate on the space of graphs.

Stein’s method as a computational tool
The end

Outline (updated)

• What is Stein’s method, and why should you care…

• Computational tools based on Stein’s method.

• Some nice (new) algorithms!

Conclusions/Take-Away
• Stein’s method gives us a new characterisation of distributions which

is particularly convenient from a computational viewpoint!

Conclusions/Take-Away
• Stein’s method gives us a new characterisation of distributions which

is particularly convenient from a computational viewpoint!

• The most useful tool is the kernel Stein discrepancy (KSD), a
discrepancy which is computable in most settings of interest in
computational statistics and machine learning!

Conclusions/Take-Away
• Stein’s method gives us a new characterisation of distributions which

is particularly convenient from a computational viewpoint!

• The most useful tool is the kernel Stein discrepancy (KSD), a
discrepancy which is computable in most settings of interest in
computational statistics and machine learning!

• Stein’s method has now touched most areas in these fields…!

Conclusions/Take-Away
• Stein’s method gives us a new characterisation of distributions which

is particularly convenient from a computational viewpoint!

• The most useful tool is the kernel Stein discrepancy (KSD), a
discrepancy which is computable in most settings of interest in
computational statistics and machine learning!

• Stein’s method has now touched most areas in these fields…!

