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Outline

Computational Problem: Computing or approximating integrals (or
expectations) against some arbitrary target P is a very hard task!∫

X
f (x)P(dx)

Examples include:
1 Computing model evidence or posterior moments.
2 Computing normalisation constants or marginalising out latent

variables.
3 Computing distances between distributions, e.g. integral probability

metrics:

D(P,Q) := sup
f∈F

∣∣∣ ∫
X
f (x)P(dx)−

∫
X
f (x)Q(dx)

∣∣∣
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Outline

Computational Problem: Computing or approximating integrals (or
expectations) against some arbitrary target P is a very hard task!∫

X
f (x)P(dx)

Sketch Solution: Design a very expressive class of functions G such
that

∫
X g(x)P(dx) can be computed in closed form ∀g ∈ G.

Aim: Discuss the journey of Stein’s method from an analytical tool in
probability theory to a useful trick for computational statistics.

Upcoming review paper on the topic called “Stein’s Method meets
Statistics” with some of the researchers highly involved with this topic
including Lester Mackey, Qiang Liu, Chris Oates, Gesine Reinert, and
many others...

Warning: This talk is a (very) biased overview.
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Introduction to Stein’s Method

Stein’s Identity

Stein’s method allows us to characterise a probability distribution P
through a pair (U ,S) consisting of a function space U called Stein
class and an operator S called Stein operator:∫

X
S[u](x)Q(dx) = 0 ∀u ∈ U ⇔ P = Q

In particular, the space of functions G where g ∈ G is given by
g = S[u] + c for u ∈ U all integrate to c ∈ R against P.

Example: Suppose we want to characterise P = N(0, 1). In this case,
we can take the operator S[u](x) = u′(x)− xu(x) and a class U
which contains absolutely continuous functions u such that∫
R |u

′(x)|P(dx) <∞.

Stein, C. (1972). A bound for the error in the normal approximation to the distribution of
a sum of dependent random variables. In Proceedings of 6th Berkeley Symposium on
Mathematical Statistics and Probability (pp. 583-602). University of California Press.
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Introduction to Stein’s Method

The Generator Approach to Stein’s Method

Barbour proposed the generator approach to Stein’s method.
[1] A. D. Barbour. Stein’s Method and Poisson Process Convergence. Journal of Applied
Probability, 25:175-184, 1988.

Let {Zt}t∈R be a stationnary and reversible Markov process with
invariant distribution P. Then, it’s infinitesimal generator (defined
over suitable functions) is given by:

A[u](x) = lim
s→0

(
1

s
E[u(Zs)|Z0 = x ]− u(x)

)
This describes the behaviour of the Markov process over an
infinitesimal amount of time.

In particular, note: E [A[u]] = 0 so we may use any such operator as
a Stein operator.
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Introduction to Stein’s Method

Langevin Stein Operator

In the rest of this talk, we will use the generator of a Langevin
diffusion on X = Rd . Denote by p the density of P, then:

Acting on vector-valued functions u : Rd → Rd :

SL[u] := ∇ log p · u +∇ · u

Acting on scalar-valued functions u : Rd → R:

SSL[u] := ∇ log p · ∇u + ∆u

We are back in familiar territory for computational statisticians...
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Introduction to Stein’s Method

Very Weak Requirements on the Distribution!

We now have a class of functions G (of the form g = SSL[u]) which
integrate to some constant c:

g(x) = SSL[u](x) + c = ∇ log p(x) · ∇u(x) + ∆u(x) + c

Unlike in the previous case, this operator can be used for a very large
class of distributions!

Important Remark: Evaluating ∇ log p does not require any
knowledge of normalisation constant of p.

(I am hiding some technical conditions for U and ∇ log p for now...)
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Introduction to Stein’s Method

Useful Quantity: Stein Discrepancies

Integral probability metric (e.g. TV, Wasserstein, MMD...):

D(P,Q) := sup
f ∈F

∣∣∣ ∫
X
f (x)P(dx)−

∫
X
f (x)Q(dx)

∣∣∣
We call Stein discrepancy:

DU ,S(P‖Q) := sup
u∈U

∣∣∣∫
X
S[u](x)P(dx)︸ ︷︷ ︸

=0 since u∈U

−
∫
X
S[u](x)Q(dx)

∣∣∣
:= sup

u∈U

∣∣∣∣∫
X
S[u](x)Q(dx)

∣∣∣∣
Let V ⊆ U . In particular:

DV,S

(
P
∥∥∥1

n

n∑
i=1

δxi

)
:= sup

u∈V

∣∣∣∣∣1n
n∑

i=1

S[u](xi )

∣∣∣∣∣
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Introduction to Stein’s Method

Kernel Stein Discrepancies

Example: Let Hk to be the unit-ball of some reproducing kernel

Hilbert space (RKHS) with kernel k . Take V = Hd
k and S = SL.

Then, we get the kernel Stein discrepancy (KSD):

DV,S

(
P
∥∥∥1

n

n∑
i=1

δxi

)
:=

√√√√ 1

n2

n∑
i ,j=1

k0(xi , xj)

k0(x , x) := k(x , x ′)∇x log p(x)>∇x′ log p(x ′) + Tr(∇x∇x′k(x , x ′))

+∇x′k(x , x ′)>∇x log p(x) +∇xk(x , x ′)>∇x′ log p(x ′)

where for example k(x , x ′) = exp(−‖x − y‖2
2/l

2) for l > 0.
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Application #1: Approximation of Posterior Distributions

Application #1: Approximation of Posterior
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Application #1: Approximation of Posterior Distributions

Stein Points

Task: We want to approximate a posterior P with points {xi}ni=1.

Solution: Minimise a Stein discrepancy:

arg min
{xi}ni=1⊂X

DV,S

(
P
∥∥∥1

n

n∑
i=1

δxi

)

In general, this is an intractable optimisation problem (it is very
high-dimensional and non-convex), but we can solve it approximately.

We call any point sets approximating this objective Stein Points.

Chen, W. Y., Mackey, L., Gorham, J., Briol, F.-X., and Oates, C. J. (2018). Stein points.
International Conference on Machine Learning, PMLR 80 (pp. 843-852).

Chen, W. Y., Barp, A., Briol, F.-X., Gorham, J., Girolami, M., Mackey, L., and Oates, C.
J. (2019). Stein point Markov chain Monte Carlo. International Conference on Machine
Learning, PMLR 97 (pp. 1011-1021).
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Application #1: Approximation of Posterior Distributions

Stein Point MCMC

SP-MCMCMCMC

SP-MCMC:

Greedy approximation of the KSD over the the path of a Markov
chain (with an adaptive restart strategy).

More expensive than MCMC, but gives “better” point sets!
Particularly useful when ∇x log p is expensive.
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Application #1: Approximation of Posterior Distributions

Stein Points: Connections with QMC

There are some close parallels with quasi-Monte Carlo (QMC):

There, the aim is to minimise the star-discrepancy.

Of course, the big difference is that QMC is restricted to X being the
unit cube and uniform P. In comparison, Stein Points can be used
when P is a posterior distribution.
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Application #2: Estimators for Unnormalised Models
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Application #2: Estimators for Unnormalised Models

Minimum Stein Discrepancy Estimators

Task: We have pθ(x) = p̄θ(x)/Cθ (p̄θ(x) can be evaluated pointwise),
and our aim is to recover θ∗ given iid realisations {xi}ni=1 from Pθ∗ .

Solution: Estimators called Minimum Stein discrepancy estimators:

θ̂n := arg min
θ

DV,S

(
Pθ
∥∥∥1

n

n∑
i=1

δxi

)

A. Barp, F.-X. Briol, A. B. Duncan, M. Girolami, and L. Mackey. Minimum Stein
discrepancy estimators. Neural Information Processing Systems, pages 12964-12976, 2019

We showed many algorithms are special cases, including contrastive
divergence (∼ 4500 citations), score-matching and ratio matching
(∼ 600 citations), minimum probability flow (∼ 150 citations).

It is also possible to create new algorithms by changing V and S!
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Application #3: Control Variates

Control Variates for Monte Carlo Methods

Task: We would like to approximate some integral
∫
X f (x)P(dx) using

a Monte Carlo estimator 1
n

∑n
i=1 f (xi ) where {xi}ni=1 is iid from P.

From the CLT, we know that the speed of convergence of Monte
Carlo estimators depends on σ2

f = VarP[f ]:

√
n

(∫
X
f (x)P(dx)− 1

n

n∑
i=1

f (xi )

)
→ N (0, σ2

f )

For MCMC: σ2
f = Var[f (X1)] + 2

∑∞
k=1 Cov(f (X1), f (X1+k))).

Similar expressions exists for QMC...
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Application #3: Control Variates

Variance Reduction with Control Variates

Solution: Use a control variate (CV), which is a function g such that:∫
X
f (x)P(dx) =

∫
X
f (x)− g(x)P(dx),

VarP[f − g ]� VarP[f ].

(1) To satisfy the first criterion, we can build CVs using Stein method by
taking g = S[u] for some u ∈ U , a Stein space.

(2) To satisfy the second criterion, we can choose the “best” CV in some
approximation space V ⊆ U in the sense of minimising the variance:

u∗ = arg inf
u∈V⊆U

VarP[f − S[u]]

In particular if V = U , this would give a zero-variance CV!
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Application #3: Control Variates

Some Approximations

A few approximations are needed to solve this problem:

(1) We look for the best CV in some parametric subspace VΘ ⊂ U .

θ∗ = arg min
θ∈Θ

VarP[f − S[uθ]].

(2) We approximate the variance with a subset of size m� n of samples:

V̂arm[f − S[uθ]] ≈ VarP[f − S[uθ]].

The literature has a variety of special cases with different combinations of

V̂arm[f − S[uθ]] and VΘ.
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Application #3: Control Variates

Special Cases

VΘ is a space of polynomials with parameters in Θ:

Assaraf, R., & Caffarel, M. (1999). Zero-variance principle for Monte Carlo algorithms.
Physical Review Letters, 83(23), 4682.

Mira, A., Solgi, R., & Imparato, D. (2013). Zero variance Markov chain Monte Carlo for
Bayesian estimators. Statistics and Computing, 23(5), 653-662.

South, L. F., Oates, C. J., Mira, A., & Drovandi, C. (2019). Regularised zero-variance
control variates for high-dimensional variance reduction. arXiv:1811.05073.

VΘ is a weighted sum of kernel evaluations with weights in Θ:

Oates, C. J., Girolami, M., & Chopin, N. (2017). Control functionals for Monte Carlo
integration. Journal of the Royal Statistical Society B, 79(3), 695-718.

Oates, C. J., Cockayne, J., Briol, F.-X., & Girolami, M. (2019). Convergence rates for a
class of estimators based on Stein’s identity. Bernoulli, 25(2), 1141-1159.
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Application #3: Control Variates

Control Functionals: A Toy Example

f (x) = 1 + sin(2πx), P is a U(0, 1), i.i.d. samples,
u in some RKHS with kernel k , Langevin Stein operator SSL.
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Application #3: Control Variates

The Genz Functions

Genz functions: Computed the mean absolute error (over 20 runs) for a set
of 6 test functions with challenging features for integration (e.g. fast

oscillations, peaks, discontinuities, etc...)

We took m = 1000 and d = 1. Polynomial CVs were of order 2.

Computing these CVs significantly improves the performance but can be
very computationally expensive.
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Application #3: Control Variates

Computational Complexity

Problem: These linear systems quickly become enormous when the
number of samples m is large, or the dimension d is large. The
computational cost is cubic in the number of parameters.

Si, S., Oates, C. J., Duncan, A. B., Carin, L., & Briol, F.-X. (2020). Scalable control
variates for Monte Carlo methods via stochastic optimization. arXiv:2006.07487.

Significant speed-ups can be obtained by minimising the following
objective through stochastic optimisation:

arg min
θ∈Θ

Ĵm(θ) = arg min
θ∈Θ

V̂arm[f − S[uθ]] + λm‖θ‖2

V̂arm[f − S[uθ]] =
1

m

m∑
i=1

(f (xi )− S[uθ]− θ0)2

Stochastic gradient descent (SGD): Given some {αt}t∈N+ , we:
Initialise θ0 ∈ Θ.
For t ∈ N+, θt+1 = θt − αt∇θ Ĵm(θ)
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Ĵm(θ) = arg min
θ∈Θ

V̂arm[f − S[uθ]] + λm‖θ‖2

V̂arm[f − S[uθ]] =
1

m

m∑
i=1

(f (xi )− S[uθ]− θ0)2

Stochastic gradient descent (SGD): Given some {αt}t∈N+ , we:
Initialise θ0 ∈ Θ.
For t ∈ N+, θt+1 = θt − αt∇θ Ĵm(θ)
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Ĵm(θ) = arg min
θ∈Θ

V̂arm[f − S[uθ]] + λm‖θ‖2

V̂arm[f − S[uθ]] =
1

m

m∑
i=1

(f (xi )− S[uθ]− θ0)2

Stochastic gradient descent (SGD): Given some {αt}t∈N+ , we:
Initialise θ0 ∈ Θ.
For t ∈ N+, θt+1 = θt − αt∇θ Ĵm(θ)
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Application #3: Control Variates

Advantages of This Approach

Stochastic optimisation can significantly reduce computational cost.

We can do early stopping at any iteration. The CV corresponding to
θt is always a valid CV (in the sense that

∫
S[uθt ](x)P(dx) = 0 ∀t)

Let (S1,U1), . . . , (Sq,Uq) be pairs of Stein operators/classes for P.
We can create very flexible families of CV as follows:

g = c1S1[u1] + . . .+ c1Sq[uq]

satisfies Π[g ] = 0 ∀u1 ∈ U1, . . . , uq ∈ Uq and c1, . . . , cq ∈ R.

The problem is convex whenever VΘ is linear in the parameters (e.g.
polynomials and kernels). We can hence guarantee convergence.
However, we can also use non-linear models such as neural networks:

Wan, R., Zhong, M., Xiong, H. and Zhu, Z. (2019). Neural control variates for Monte
Carlo variance reduction. Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 533-547.
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Application #3: Control Variates

Computational Cost

Problem:
∫
X f (x)P(dx) where f (x) =

∑d
i=1 xi and P = N(0, 1).

Cost: linear system: O(m3 + m2d), Ours: O(mdbt).

m is sample size, d is dimension, t is SGD steps, b is mini-batch size.
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Application #3: Control Variates

Bayesian Logistic Regression in d = 61

Sonar dataset from UCI repository. Integral is over posterior
distribution on coefficients to obtain the predictive distribution.

The ensemble of kernel and polynomial CVs outperforms CVs based
on neural nets. It is also easier to use since the objective is convex.
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Other Applications
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Other Applications

Some Other Applications of Stein’s Method (#1)

Stein’s Method has the potential to impact many areas of computational
statistics and machine learning.

1) Diagnostic tools for MCMC:
Gorham, J., & Mackey, L. (2017). Measuring sample quality with kernels. International
Conference on Machine Learning (pp. 1292-1301).

Gorham, J., Duncan, A., Mackey, L., & Vollmer, S. (2019). Measuring sample quality
with diffusions. Annals of Applied Probability, 29(5), 2884-2928.

2) Variational inference:
Liu, Q., and Wang, D. (2016). Stein variational gradient descent: A general purpose
Bayesian inference algorithm. Neural Information Processing Systems (pp. 2378-2386).

Ranganath, R., Altosaar, J., Tran, D., & Blei, D. M. (2016). Operator variational
inference. In Advances in Neural Information Processing Systems (pp. 496-504).
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Other Applications

Some Other Applications of Stein’s Method (#2)

3) Importance sampling:
Liu, Q., & Lee, J. D. (2017). Black-box importance sampling. In Proceedings of the
International Conference on Artificial Intelligence and Statistics (pp. 952-961).

4) Thinning of MCMC chains:
Riabiz, M., Chen, W., Cockayne, J., Swietach, P., Niederer, S. A., Mackey, L., & Oates,
C. J. (2020). Optimal thinning of MCMC output. arXiv:2005.03952.

5) Goodness-of-fit testing:
Chwialkowski, K., Strathmann, H., & Gretton, A. (2016). A kernel test of goodness of fit.
International Conference on Machine Learning, 48, 2606-2615.

Liu, Q., Lee, J., & Jordan, M. (2016). A kernelized Stein discrepancy for goodness-of-fit
tests and model evaluation. International Conference on Machine Learning (pp. 276-284).

Many others on the website of Yvik Swan:
https://sites.google.com/site/steinsmethod
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International Conference on Artificial Intelligence and Statistics (pp. 952-961).

4) Thinning of MCMC chains:
Riabiz, M., Chen, W., Cockayne, J., Swietach, P., Niederer, S. A., Mackey, L., & Oates,
C. J. (2020). Optimal thinning of MCMC output. arXiv:2005.03952.

5) Goodness-of-fit testing:
Chwialkowski, K., Strathmann, H., & Gretton, A. (2016). A kernel test of goodness of fit.
International Conference on Machine Learning, 48, 2606-2615.

Liu, Q., Lee, J., & Jordan, M. (2016). A kernelized Stein discrepancy for goodness-of-fit
tests and model evaluation. International Conference on Machine Learning (pp. 276-284).

Many others on the website of Yvik Swan:
https://sites.google.com/site/steinsmethod
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Conclusion

Take-Aways

Intractable integrals pop up everywhere in computational statistics
and Stein’s identity is a very useful trick to bypass them!

Stein operators for P can be created from infinitesimal generators of
Markov processes, many of which only require access to ∇x log p. In
particular, this means we do not need normalisation constants.

I have highlighted applications for the approximation of posterior
distributions, inference for unnormalised models, and control variates
for MCMC. But there are many others...! See the upcoming review on

“Stein’s Method Meets Statistics”
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